158 research outputs found

    TEMPORAL EVOLUTION OF THERMAL STRUCTURES AND WINTER HEAT CONTENT CHANGE FROM VOS-XBT DATA IN THE CENTRAL MEDITERRANEAN SEA

    Get PDF
    Seasonal and year-to-year time evolution of the thermal structure, including the heat content change in the upper water column and its relationship with the surface net heat fluxes, have been studied at five locations in the central Mediterranean Sea. The study is based on temperature profiles collected during XBT surveys (eXpendable Bathy- Thermograph) carried out on ships of opportunity, in the framework of the MFSPP (Mediterranean Forecasting System Pilot Project), between September 1999 and May 2001. The five investigated zones are located in the southern Adriatic, NW Ionian, southern and northern Tyrrhenian, and Ligurian Sea. Gradual erosion of the thermocline in autumn, formation of a mixed layer in winter, and the onset of the stratification in spring, are common properties of the temporal evolution of thermal structures at all five locations. Moreover, in the southern Adriatic, a deep convection took place down to about 600m in winter 1999/2000. On the other hand, mild climatic conditions and small surface heat loss in autumn and winter 2000/2001 drastically reduced a mixing/ convection depth which hardly reached 200 m. Simultaneously, the NW Ionian remained slightly stratified throughout the winter period. The heat storage rate in the upper portion of the water column (down to 450 m) is compared with the air-sea net heat flux at a monthly scale. A heat content decrease is determined by the surface heat loss, and the processes such as lateral advection, or upwelling of the colder waters through the base of the water column (for example, in the southern Adriatic and Ionian Seas). Elsewhere (for example, in the northern Tyrrhenian and Ligurian Seas), the upwelling does not contribute significantly to the heat balance within the water column, since the vertical temperature gradients in deeper layers are negligible

    Bayesian hierarchical modelling approaches for combining information from multiple data sources to produce annual estimates of national immunization coverage

    Full text link
    Estimates of national immunization coverage are crucial for guiding policy and decision-making in national immunization programs and setting the global immunization agenda. WHO and UNICEF estimates of national immunization coverage (WUENIC) are produced annually for various vaccine-dose combinations and all WHO Member States using information from multiple data sources and a deterministic computational logic approach. This approach, however, is incapable of characterizing the uncertainties inherent in coverage measurement and estimation. It also provides no statistically principled way of exploiting and accounting for the interdependence in immunization coverage data collected for multiple vaccines, countries and time points. Here, we develop Bayesian hierarchical modeling approaches for producing accurate estimates of national immunization coverage and their associated uncertainties. We propose and explore two candidate models: a balanced data single likelihood (BDSL) model and an irregular data multiple likelihood (IDML) model, both of which differ in their handling of missing data and characterization of the uncertainties associated with the multiple input data sources. We provide a simulation study that demonstrates a high degree of accuracy of the estimates produced by the proposed models, and which also shows that the IDML model is the better model. We apply the methodology to produce coverage estimates for select vaccine-dose combinations for the period 2000-2019. A contributed R package {\tt imcover} implementing the No-U-Turn Sampler (NUTS) in the Stan programming language enhances the utility and reproducibility of the methodology.Comment: 31 pages (main), 4 figure

    State of inequality in diphtheria-tetanus-pertussis immunisation coverage in low-income and middle-income countries: a multicountry study of household health surveys

    Get PDF
    Background Immunisation programmes have made substantial contributions to lowering the burden of disease in children, but there is a growing need to ensure that programmes are equity-oriented. We aimed to provide a detailed update about the state of between-country inequality and within-country economic-related inequality in the delivery of three doses of the combined diphtheria, tetanus toxoid, and pertussis-containing vaccine (DTP3), with a special focus on inequalities in high-priority countries. Methods We used data from the latest available Demographic and Health Surveys and Multiple Indicator Cluster Surveys done in 51 low-income and middle-income countries. Data for DTP3 coverage were disaggregated by wealth quintile, and inequality was calculated as diff erence and ratio measures based on coverage in richest (quintile 5) and poorest (quintile 1) household wealth quintiles. Excess change was calculated for 21 countries with data available at two timepoints spanning a 10 year period. Further analyses were done for six high-priority countries—ie, those with low national immunisation coverage and/or high absolute numbers of unvaccinated children. Signifi cance was determined using 95% CIs. Findings National DTP3 immunisation coverage across the 51 study countries ranged from 32% in Central African Republic to 98% in Jordan. Within countries, the gap in DTP3 immunisation coverage suggested pro-rich inequality, with a diff erence of 20 percentage points or more between quintiles 1 and 5 for 20 of 51 countries. In Nigeria, Pakistan, Laos, Cameroon, and Central African Republic, the diff erence between quintiles 1 and 5 exceeded 40 percentage points. In 15 of 21 study countries, an increase over time in national coverage of DTP3 immunisation was realised alongside faster improvements in the poorest quintile than the richest. For example, in Burkina Faso, Cambodia, Gabon, Mali, and Nepal, the absolute increase in coverage was at least 2·0 percentage points per year, with faster improvement in the poorest quintile. Substantial economic-related inequality in DTP3 immunisation coverage was reported in fi ve high-priority study countries (DR Congo, Ethiopia, Indonesia, Nigeria, and Pakistan), but not Uganda. Interpretation Overall, within-country inequalities in DTP3 immunisation persist, but seem to have narrowed over the past 10 years. Monitoring economic-related inequalities in immunisation coverage is warranted to reveal where gaps exist and inform appropriate approaches to reach disadvantaged populations

    Impact of dense-water flow over a sloping bottom on open-sea circulation: Laboratory experiments and an Ionian Sea (Mediterranean) example

    Get PDF
    The North Ionian Gyre (NIG) displays prominent inversions on decadal scales. We investigate the role of internal forcing induced by changes in the horizontal pressure gradient due to the varying density of Adriatic Deep Water (AdDW), which spreads into the deep layers of the northern Ionian Sea. In turn, the AdDW density fluctuates according to the circulation of the NIG through a feedback mechanism known as the bimodal oscillating system. We set up laboratory experiments with a two-layer ambient fluid in a circular rotating tank, where densities of 1000 and 1015ĝ€¯kgĝ€¯m-3 characterize the upper and lower layers, respectively. From the potential vorticity evolution during the dense-water outflow from a marginal sea, we analyze the response of the open-sea circulation to the along-slope dense-water flow. In addition, we show some features of the cyclonic and anticyclonic eddies that form in the upper layer over the slope area. We illustrate the outcome of the experiments of varying density and varying discharge rates associated with dense-water injection. When the density is high (1020ĝ€¯kgĝ€¯m-3) and the discharge is large, the kinetic energy of the mean flow is stronger than the eddy kinetic energy. Conversely, when the density is lower (1010ĝ€¯kgĝ€¯m-3) and the discharge is reduced, vortices are more energetic than the mean flow - that is, the eddy kinetic energy is larger than the kinetic energy of the mean flow. In general, over the slope, following the onset of dense-water injection, the cyclonic vorticity associated with current shear develops in the upper layer. The vorticity behaves in a two-layer fashion, thereby becoming anticyclonic in the lower layer of the slope area. Concurrently, over the deep flat-bottom portion of the basin, a large-scale anticyclonic gyre forms in the upper layer extending partly toward a sloping rim. The density record shows the rise of the pycnocline due to the dense-water sinking toward the flat-bottom portion of the tank. We show that the rate of increase in the anticyclonic potential vorticity is proportional to the rate of the rise of the interface, namely to the rate of decrease in the upper-layer thickness (i.e., the upper-layer squeezing). The comparison of laboratory experiments with the Ionian Sea is made for a situation when the sudden switch from cyclonic to anticyclonic basin-wide circulation took place following extremely dense Adriatic water overflow after the harsh winter in 2012. We show how similar the temporal evolution and the vertical structure are in both laboratory and oceanic conditions. The demonstrated similarity further supports the assertion that the wind-stress curl over the Ionian Sea is not of paramount importance in generating basin-wide circulation inversions compared with the internal forcing

    Neck circumference is associated with adipose tissue content in thigh skeletal muscle in overweight and obese premenopausal women

    Get PDF
    Neck circumference (NC) has been proposed as a simple and practical tool, independently associated with cardiometabolic risk factors. However, the association of NC with inter-muscular adipose tissue (IMAT) is still to be determined. We aimed to examine the association of NC with thigh IMAT, and visceral adipose tissue (VAT) measured with computed tomography (CT) in overweight/obese women. 142 premenopausal overweight and obese Caucasian women participated in this crosssectional study. NC was measured with an inextensible metallic tape above the thyroid cartilage according to International Society for Advancement of Kinanthropometry protocol. Thigh IMAT and VAT volumes were measured with a single cross-sectional CT. Regarding the covariates, fat mass (FM) was assessed with dual-energy x-ray absorptiometry and physical activity was objectively measured with accelerometry. NC was positively associated with thigh IMAT and VAT volumes (standardized β coefcient: β=0.45, P-value= ≤0.001, β=0.60, P=≤0.001; respectively), which persisted after adjusting for age, height, overall FM or moderate-to-vigorous physical activity. Our fndings show that NC is associated with thigh IMAT volume in overweight and obese premenopausal Caucasian women, regardless of the amount of lower-body fatness. These results suggest underscoring the relevance of NC as a marker of adipose tissue content in thigh skeletal muscle.Portuguese Foundation for Science and Technology Sapiens 358007/99Oeiras City CouncilBecel PortugalRoche Pharmaceuticals PortugalCompal PortugalUniversity of Granada Plan Propio de Investigacion 2016 -Excellence actions: Unit of Excellence on Exercise and Health (UCEES)Junta de AndaluciaEuropean Union (EU) SOMM17/6107/UGRFundacion Carolina C.201657496

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation

    Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research

    Get PDF
    This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries
    corecore