63 research outputs found

    Quantitative Mechanistic Modeling in Support of Pharmacological Therapeutics Development in Immuno-Oncology

    Get PDF
    Following the approval, in recent years, of the first immune checkpoint inhibitor, there has been an explosion in the development of immuno-modulating pharmacological modalities for the treatment of various cancers. From the discovery phase to late-stage clinical testing and regulatory approval, challenges in the development of immuno-oncology (IO) drugs are multi-fold and complex. In the preclinical setting, the multiplicity of potential drug targets around immune checkpoints, the growing list of immuno-modulatory molecular and cellular forces in the tumor microenvironment—with additional opportunities for IO drug targets, the emergence of exploratory biomarkers, and the unleashed potential of modality combinations all have necessitated the development of quantitative, mechanistically-oriented systems models which incorporate key biology and patho-physiology aspects of immuno-oncology and the pharmacokinetics of IO-modulating agents. In the clinical setting, the qualification of surrogate biomarkers predictive of IO treatment efficacy or outcome, and the corresponding optimization of IO trial design have become major challenges. This mini-review focuses on the evolution and state-of-the-art of quantitative systems models describing the tumor vs. immune system interplay, and their merging with quantitative pharmacology models of IO-modulating agents, as companion tools to support the addressing of these challenges

    Optimization of the MACE endpoint composition to increase power in studies of lipid-lowering therapies—a model-based meta-analysis

    Get PDF
    AimsTo develop a model-informed methodology for the optimization of the Major Adverse Cardiac Events (MACE) composite endpoint, based on a model-based meta-analysis across anti-hypercholesterolemia trials of statin and anti-PCSK9 drugs.Methods and resultsMixed-effects meta-regression modeling of stand-alone MACE outcomes was performed, with therapy type, population demographics, baseline and change over time in lipid biomarkers as predictors. Randomized clinical trials up to June 28, 2022, of either statins or anti-PCSK9 therapies were identified through a systematic review process in PubMed and ClinicalTrials.gov databases. In total, 54 studies (270,471 patients) were collected, reporting 15 different single cardiovascular events. Treatment-mediated decrease in low density lipoprotein cholesterol, baseline levels of remnant and high-density lipoprotein cholesterol as well as non-lipid population characteristics and type of therapy were identified as significant covariates for 10 of the 15 outcomes. The required sample size per composite 3- and 4-point MACE endpoint was calculated based on the estimated treatment effects in a population and frequencies of the incorporated events in the control group, trial duration, and uncertainty in model parameters.ConclusionA quantitative tool was developed and used to benchmark different compositions of 3- and 4-point MACE for statins and anti-PCSK9 therapies, based on the minimum population size required to achieve statistical significance in relative risk reduction, following meta-regression modeling of the single MACE components. The approach we developed may be applied towards the optimization of the design of future trials in dyslipidemia disorders as well as in other therapeutic areas

    Mathematical modeling of endogenous and exogenously administered T cell recirculation in mouse and its application to pharmacokinetic studies of cell therapies

    Get PDF
    IntroductionIn vivo T cell migration has been of interest to scientists for the past 60 years. T cell kinetics are important in the understanding of the immune response to infectious agents. More recently, adoptive T cell therapies have proven to be a most promising approach to treating a wide range of diseases, including autoimmune and cancer diseases, whereby the characterization of cellular kinetics represents an important step towards the prediction of therapeutic efficacy. MethodsHere, we developed a physiologically-based pharmacokinetic (PBPK) model that describes endogenous T cell homeostasis and the kinetics of exogenously administered T cells in mouse. Parameter calibration was performed using a nonlinear fixed-effects modeling approach based on published data on T cell kinetics and steady-state levels in different tissues of mice. The Partial Rank Correlation Coefficient (PRCC) method was used to perform a global sensitivity assessment. To estimate the impact of kinetic parameters on exogenously administered T cell dynamics, a local sensitivity analysis was conducted. ResultsWe simulated the model to analyze cellular kinetics following various T cell doses and frequencies of CCR7+ T cells in the population of infused lymphocytes. The model predicted the effects of T cell numbers and of population composition of infused T cells on the resultant concentration of T cells in various organs. For example, a higher percentage of CCR7+ T cells among exogenously administered T lymphocytes led to an augmented accumulation of T cells in the spleen. The model predicted a linear dependence of T cell dynamics on the dose of adoptively transferred T cells. DiscussionThe mathematical model of T cell migration presented here can be integrated into a multi-scale model of the immune system and be used in a preclinical setting for predicting the distribution of genetically modified T lymphocytes in various organs, following adoptive T cell therapies

    Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs

    Get PDF
    We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier–Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems physiology, biophysical models are being increasingly used to characterize drug transport and distribution in human tissues where pharmacokinetic measurements are difficult or impossible to perform. Importantly, biophysical models can describe emergent properties of a system, i.e. properties not identifiable through the study of the system’s components taken in isolation

    Evaluating the Effect of Tissue Anisotropy on Brain Tumor Growth using a Mechanically-coupled Reaction-Diffusion Model

    Get PDF
    Glioblastoma (GBM), the most frequent malignant brain tumor in adults, is char- acterized by rapid growth and healthy tissue invasion. Long-term prognosis for GBM remains poor with median overall survival between 1 y to 2 y [15]. GBM presents with different growth phenotypes, ranging from invasive tumors without notable mass-effect to strongly displacing lesions. Biomechanical forces, such as those resulting from displacive tumor growth, shape the tumor environment and contribute to tumor progression [9]. We present an extended version of a mechanically–coupled reaction-diffusion model of brain tu- mor growth [1] that simulates tumor evolution over time and across different brain regions using literature-based parameter estimates for tumor cell proliferation, as well as isotropic motility, and mechanical tissue properties. This model yielded realistic estimates of the mechanical impact of a growing tumor on intra-cranial pressure. However, comparison to imaging data showed that asymmetric shapes could not be reproduced by isotropic growth assumptions. We modified this model to account for structural tissue anisotropy which is known to affect the directionality of tumor cell migration and may influence the mechanical behavior of brain tissue. Tumors were seeded at multiple locations in a human MR-DTI brain atlas and their spatio-temporal evolution was simulated using the Finite-Element Method. We evaluated the impact of tissue anisotropy on the model’s ability to reproduce the aspherical shapes of real pathologies by comparing predicted lesions to publicly available GBM imaging data. We found the impact on tumor shape to be strongly location dependent and highest for tumors located in brain regions that are characterized by a single dominant white matter direction, such as the corpus callosum. However, despite strongly anisotropic growth assumptions, all simulated tumors remained more spherical than real lesions at the corresponding location and similar volume. This finding is in agreement with previous studies [17, 6] suggesting that anisotropic cell migration along white matter fiber tracks is not a major determinant of tumor shape in the setting of reaction-diffusion based tumor growth models and for most locations across the brain

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Effects of pulsatile laminar shear stress on cultured vascular endothelial cells

    No full text
    M.S.Robert M. Nere

    A Generic Mechanism for Enhanced Cytokine Signaling via Cytokine-Neutralizing Antibodies.

    No full text
    Enhancement or inhibition of cytokine signaling and corresponding immune cells responses are critical factors in various disease treatments. Cytokine signaling may be inhibited by cytokine-neutralizing antibodies (CNAs), which prevents further activation of cytokine receptors. However, CNAs may result in enhanced-instead of inhibitory-cytokine signaling (an "agonistic effect") in various in vitro and in vivo experiments. This may lead to lack of efficacy or adverse events for cytokine-inhibiting based medicines. Alternatively, cytokine-antibody complexes may produce stronger signaling vs. cytokine alone, thereby increasing the efficacy of stimulating cytokine-based drugs, at equal or lower cytokine doses. In this paper, the effect of cytokine signaling enhancement by a CNA was studied in a generic mathematical model of interleukin-4 (IL-4) driven T-cell proliferation. The occurrence of the agonistic effect depends upon the antibody-to-cytokine binding affinity and initial concentrations of antibody and cytokine. Model predictions were in agreement with experimental studies. When the cytokine receptor consists of multiple subunits with substantially differing affinities (e.g., IL-4 case), the choice of the receptor chain to be blocked by the antibody is critical, for the agonistic effect to appear. We propose a generic mechanism for the effect: initially, binding of the CNA to the cytokine reduces free cytokine concentration; yet, cytokine molecules bound within the cytokine-CNA complex-and released later and over time-are "rescued" from earlier clearance via cellular internalization. Hence, although free cytokine-dependent signalling may be less potent initially, it will also be more sustained over time; and given non-linear dynamics, it will lead ultimately to larger cellular effector responses, vs. the same amount of free cytokine in the absence of CNA. We suggest that the proposed mechanism is a generic property of {cytokine, CNA, receptor} triads, both in vitro and in vivo, and can occur in a predictable fashion for a variety of cytokines of the immune system

    A mechanistic tumor penetration model to guide antibody drug conjugate design.

    No full text
    Antibody drug conjugates (ADCs) represent novel anti-cancer modalities engineered to specifically target and kill tumor cells expressing corresponding antigens. Due to their large size and their complex kinetics, these therapeutic agents often face heterogeneous distributions in tumors, leading to large untargeted regions that escape therapy. We present a modeling framework which includes the systemic distribution, vascular permeability, interstitial transport, as well as binding and payload release kinetics of ADC-therapeutic agents in mouse xenografts. We focused, in particular, on receptor dynamics such as endocytic trafficking mechanisms within cancer cells, to simulate their impact on tumor mass shrinkage upon ADC administration. Our model identified undesirable tumor properties that can impair ADC tissue homogeneity, further compromising ADC success, and explored ADC design optimization scenarios to counteract upon such unfavorable intrinsic tumor tissue attributes. We further demonstrated the profound impact of cytotoxic payload release mechanisms and the role of bystander killing effects on tumor shrinkage. This model platform affords a customizable simulation environment which can aid with experimental data interpretation and the design of ADC therapeutic treatments
    corecore