13 research outputs found

    Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration

    Get PDF
    Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD

    αCaMKII Is Essential for Cerebellar LTD and Motor Learning

    Get PDF
    SummaryActivation of postsynaptic α-calcium/calmodulin-dependent protein kinase II (αCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Here we show that postsynaptic LTP is unaffected at parallel fiber-Purkinje cell synapses in the cerebellum of αCaMKII−/− mice. In contrast, a long-term depression (LTD) protocol resulted in only transient depression in juvenile αCaMKII−/− mutants and in robust potentiation in adult mutants. This suggests that the function of αCaMKII in parallel fiber-Purkinje cell plasticity is opposite to its function at excitatory hippocampal and cortical synapses. Furthermore, αCaMKII−/− mice showed impaired gain-increase adaptation of both the vestibular ocular reflex and optokinetic reflex. Since Purkinje cells are the only cells in the cerebellum that express αCaMKII, our data suggest that an impairment of parallel fiber LTD, while leaving LTP intact, is sufficient to disrupt this form of cerebellar learning

    Retinal neurodegeneration and brain MRI markers: the Rotterdam Study

    No full text
    We investigated the association of specific retinal sublayer thicknesses on optical coherence tomography (OCT) with brain magnetic resonance imaging (MRI) markers. We included 2124 persons (mean age 67.0 years; 56% women) from the Rotterdam Study who had gradable retinal OCT images and brain MRI scans. Thickness of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer were measured on OCT images. Volumetric, microstructural, and focal markers of brain tissue were assessed on MRI. We found that thinner RNFL, GCL, and inner plexiform layer were associated with smaller gray-matter and white-matter volume. Furthermore, we found that thinner RNFL and GCL were associated with worse white-matter microstructure. No association was found between retinal sublayer thickness and white-matter lesion volumes, cerebral microbleeds, or lacunar infarcts. Markers of retinal neurodegeneration are associated with markers of cerebral atrophy, suggesting that retinal OCT may provide information on neurodegeneration in the brain

    Prevalence of age‐related macular degeneration in Europe: the past and the future

    No full text
    Purpose: age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future.Design: meta-analysis of prevalence data.Participants: a total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe.Methods: AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV).Main Outcome Measures: prevalence of early and late AMD, BCVA, and number of AMD cases.Results: prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95% CI 13.6%–21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%–0.3%) and 9.8% (95% CI 6.3%–13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million.Conclusion: we observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti–vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans

    Enantio and Diastereoselective Addition of Phenylacetylene to Racemic α-chloroketones

    Get PDF
    In this report, we have presented the first diastereoselective addition of phenylacetylene to chiral racemic chloroketones. The addition is controlled by the reactivity of the chloroketones that allowed the stereoselective reaction to be performed at –20 °C. Chiral racemic chloroketones are used in the reaction. By carefully controlling the temperature and the reaction time we were able to isolate the corresponding products in moderate yields and with good, simple and predictable facial stereoselection. Our reaction is a rare example of the use of chiral ketones in an enantioselective alkynylation reaction and opens new perspectives for the formation of chiral quaternary stereocenters

    Development of Refractive Errors—What Can We Learn From Inherited Retinal Dystrophies?

    No full text
    Purpose It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. Design Case-control study. Methods STUDY POPULATION: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. REFERENCE POPULATION: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. Results Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P <.0001; SE −6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P <.0001; OR high hyperopia 10.7, P =.033; SE −3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P <.0001; OR high hyperopia 9.7, P =.001; SE −2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P =.001; OR high hyperopia 5.8; P =.025; SE −0.10 D [SD 3.09]). Mutations in RPGR (SE −7.63 D [SD 3.31]) and CACNA1F (SE −5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. Conclusions Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development

    Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits

    Get PDF
    Background: Age-related macular degeneration (AMD) is a common condition of vision loss with disease development strongly influenced by environmental and genetic factors. Recently, 34 loci were associated with AMD at genome-wide significance. So far, little is known about a genetic overlap between AMD and other complex diseases or disease-relevant traits. Methods: For each of 60 complex diseases/traits with publicly available genome-wide significant association data, the lead genetic variant per independent locus was extracted and a genetic score was calculated for each disease/trait as the weighted sum of risk alleles. The association with AMD was estimated based on 16,144 AMD cases and 17,832 controls using logistic regression. Results: Of the respective disease/trait variance, the 60 genetic scores explained on average 4.8% (0.27-20.69%) and 16 of them were found to be significantly associated with AMD (Q-values < 0.01, p values from < 1.0 × 10-16 to 1.9 × 10-3). Notably, an increased risk for AMD was associated with reduced risk for cardiovascular diseases, increased risk for autoimmune diseases, higher HDL and lower LDL levels in serum, lower bone-mineral density as well as an increased risk for skin cancer. By restricting the analysis to 1824 variants initially used to compute the 60 genetic scores, we identified 28 novel AMD risk variants (Q-values < 0.01, p values from 1.1 × 10-7 to 3.0 × 10-4), known to be involved in cardiovascular disorders, lipid metabolism, autoimmune diseases, anthropomorphic traits, ocular disorders, and neurological diseases. The latter variants represent 20 novel AMD-associated, pleiotropic loci. Genes in the novel loci reinforce previous findings strongly implicating the complement system in AMD pathogenesis. Conclusions: We demonstrate a substantial overlap of the genetics of several complex diseases/traits with AMD and provide statistically significant evidence for an additional 20 loci associated with AMD. This highlights the possibility that so far unrelated pathologies may have disease pathways in common

    A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration

    No full text
    Genome-wide association studies (GWAS) for late stage age-related macular degeneration (AMD) have identified 52 independent genetic variants with genome-wide significance at 34 genomic loci. Typically, such an approach rarely results in the identification of functional variants implicating a defined gene in the disease process. We now performed a transcriptome-wide association study (TWAS) allowing the prediction of effects of AMD-associated genetic variants on gene expression. The TWAS was based on the genotypes of 16,144 late-stage AMD cases and 17,832 healthy controls, and gene expression was imputed for 27 different human tissues which were obtained from 134 to 421 individuals. A linear regression model including each individuals imputed gene expression data and the respective AMD status identified 106 genes significantly associated to AMD variants in at least one tissue (Q-value &lt; 0.001). Gene enrichment analysis highlighted rather systemic than tissue- or cell-specific processes. Remarkably, 31 of the 106 genes overlapped with significant GWAS signals of other complex traits and diseases, such as neurological or autoimmune conditions. Taken together, our study highlights the fact that expression of genes associated with AMD is not restricted to retinal tissue as could be expected for an eye disease of the posterior pole, but instead is rather ubiquitous suggesting processes underlying AMD pathology to be of systemic nature.</p

    Heritability and Genome-Wide Association Study to Assess Genetic Differences between Advanced Age-Related Macular Degeneration Subtypes

    No full text
    PURPOSE: To investigate whether the two subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV) and geographic atrophy (GA), segregate separately in families and to identify which genetic variants are associated with these two subtypes. DESIGN: Sibling correlation study and genome-wide association study (GWAS) PARTICIPANTS: For the sibling correlation study, we included 209 sibling pairs with advanced AMD. For the GWAS, we included 2594 participants with advanced AMD subtypes and 4134 controls. Replication cohorts included 5383 advanced AMD participants and 15,240 controls. METHODS: Participants had AMD grade assigned based on fundus photography and/or examination. To determine heritability of advanced AMD subtypes, we performed a sibling correlation study. For the GWAS, we conducted genome-wide genotyping and imputed 6,036,699 single nucleotide polymorphism (SNPs). We then analyzed SNPs with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES: Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS: The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P=4.2 x 10(−5)) meaning that siblings of probands with CNV or GA are more likely to develop CNV or GA, respectively. In the analysis comparing participants with CNV to those with GA, we observed a statistically significant association at the ARMS2/HTRA1 locus [rs10490924, odds ratio (OR)=1.47, P=4.3 ×10(−9)] which was confirmed in the replication samples (OR=1.38, P=7.4 x 10(−14) for combined discovery and replication analysis). CONCLUSIONS: Whether a patient with AMD develops CNV vs. GA is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations which differ for advanced AMD subtypes and deserve follow-up in additional studies
    corecore