1,108 research outputs found

    The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model

    Get PDF
    A phenomenological macroscopic model of the Giant Dipole Resonance (GDR) damping width of cold- and hot-nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi Liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface- and volume-components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides, 39,40^{39,40}K, 42^{42}Ca, 45^{45}Sc, 59,63^{59,63}Cu, 109−120^{109-120}Sn,147^{147}Eu, 194^{194}Hg, and 208^{208}Pb, and is compared with the predictions of other models.Comment: 10 pages, 5 figure

    Response Function of Hot Nuclear Matter

    Full text link
    We investigate the response function of hot nuclear matter to a small isovector external field using a simplified Skyrme interaction reproducing the value of the symmetry energy coefficient. We consider values of the momentum transfer corresponding to the dipole oscillation in heavy nuclei. We find that while at zero temperature the particle hole interaction is almost repulsive enough to have a sharp (zero sound type) collective oscillation, such is no longer the case at temperatures of a few MeV. As a result a broadening of the dipole resonance occurs, leading to its quasi disappearence by the time the temperature reaches 5 MeV. The sensivity of the temperature evolution of the width when modifying the residual interaction strength is also examined.Comment: 9 pages, IPNO/TH 94-15, DPT-IPN Orsay. Two figures available under reques

    The onset of classical QCD dynamics in relativistic heavy ion collisions

    Get PDF
    The experimental results on hadron production obtained recently at RHIC offer a new prospective on the energy dependence of the nuclear collision dynamics. In particular, it is possible that parton saturation -- the phenomenon likely providing initial conditions for the multi--particle production at RHIC energies -- may have started to set in central heavy ion collisions already around the highest SPS energy. We examine this scenario, and make predictions based on high density QCD for the forthcoming 22 GeV run at RHIC.Comment: 4 pages, 2 figures, revte

    Scaling Properties of the Giant Dipole Resonance Width in Hot Rotating nuclei

    Get PDF
    We study the systematics of the giant dipole resonance width Γ\Gamma in hot rotating nuclei as a function of temperature TT, spin JJ and mass AA. We compare available experimental results with theoretical calculations that include thermal shape fluctuations in nuclei ranging from A=45 to A=208. Using the appropriate scaled variables, we find a simple phenomenological function Γ(A,T,J)\Gamma(A,T,J) which approximates the global behavior of the giant dipole resonance width in the liquid drop model. We reanalyze recent experimental and theoretical results for the resonance width in Sn isotopes and 208^{208}Pb.Comment: LaTeX, 4 pages with 4 figures (to appear in Phys. Rev. Lett.

    Multiphonon and ``hot''-phonon Isovector Electric-Dipole Excitations

    Get PDF
    We argue that a substantial increase in the cross section for Coulomb excitation in the region of the Double Giant Dipole Resonance should be expected from Coulomb excitation of excited states involved in the spreading of the one-phonon resonance, in a manifestation of the Brink-Axel phenomenon. This generates an additional fluctuating amplitude and a corresponding new term to be added incoherently to the usual cross-section. The appropriate extension of an applicable reaction calculation is considered in order to estimate this effect.Comment: 6 pages, Latex, 1 figure available on reques

    An investigation of interplay between dissipation mechanisms in heated Fermi systems by means of radiative strength functions

    Get PDF
    A simple analytical expression for the gamma-decay strength function is derived with microcanonical ensemble for initial excited states. The approach leads to both a non-zero limit of the strength function for vanishing gamma-ray energy and a partial breakdown of Brink hypothesis. It is shown that the low energy behaviour of the gamma-decay strength functions is governed by the energy behavior of the damping width. It may provides a new tool for study of the interplay between different relaxation mechanisms of the collective excitations.Comment: LaTeX file with text: 7 pages; 2 gzipped *.ps files with figure

    The Dynamical Dipole Mode in Dissipative Heavy Ion Collisions

    Get PDF
    We study the effect of a direct Giant Dipole Resonance (GDRGDR) excitation in intermediate dinuclear systems with exotic shape and charge distributions formed in charge asymmetric fusion entrance channels. A related enhancement of the GDRGDR gamma yield in the evaporation cascade of the fused nucleus is expected. The dynamical origin of such GDRGDR extra strength will show up in a characteristic anisotropy of the dipole gamma-emission. A fully microscopic analysis of the fusion dynamics is performed with quantitative predictions of the GDRGDR photon yield based on a dynamics- statistics coupling model. In particular we focus our attention on the energy and mass dependence of the effect. We suggest a series of new experiments, in particular some optimal entrance channel conditions. We stress the importance of using the new available radioactive beams.Comment: 20 pages (Latex), 14 Postscript figure

    Has saturation physics been observed in deuteron-gold collisions at RHIC?

    Full text link
    In the framework of the recently proposed saturation picture, we examine in a systematic way whether the nuclear modification factor measured for d-Au collisions at RHIC may be simply explained. The Cronin peak which is obtained at mid-rapidity around k⊄≃3k_{\bot}\simeq 3 GeV may be reproduced at the proper height only by boosting the saturation momentum by an additional nuclear component as already shown in the literature. In this respect, mid-rapidity RHIC data cannot necessarily be seen as a probe of the saturation picture. The large rapidity (η≃3\eta\simeq 3) region allows us to test the shape of the unintegrated gluon distribution in the nucleus, investigating various parameterizations inspired by large rapidity solutions (of the BFKL and) of the Balitsky-Kovchegov (BK) equation. A satisfactory description of RCPR_{CP} at RHIC is obtained in the BK picture.Comment: 13 pages, 5 figure

    Critical behavior in the variation of GDR width at low temperature

    Get PDF
    We present the first experimental giant dipole resonance (GDR) width systematics, in the temperature region 0.8 ∌\sim 1.2 MeV for 201^{201}Tl, a near Pb nucleus, to investigate the evolution of the GDR width in shell effect & pairing dominated region. The extracted GDR widths are well below the predictions of shell effect corrected thermal shape fluctuation model (TSFM) and thermal pairing included phonon damping model. A similar behavior of the GDR width is also observed for 63^{63}Cu measured in the present work and 119^{119}Sb, measured earlier. This discrepancy is attributed to the GDR induced quadrupole moment leading to a critical point in the increase of the GDR width with temperature. We incorporate this novel idea in the phenomenological description based on the TSFM for a better understanding of the GDR width systematics for the entire range of mass, spin and temperature.Comment: Accepted for publication in Phys. Lett. B, 7 pages, 4 figure
    • 

    corecore