824 research outputs found
Stigma as understood by key informants: A social ecological approach to gay and bisexual men's use of crystal methamphetamine for sex
This paper explores the perceptions of 35 key informants (KIs) in a range of relevant health and community sectors regarding the stigmatisation of GBM's crystal methamphetamine use and sexual practice with view to informing stigma reduction efforts. A modified social ecological model was used to guide analysis and interpretation. At the individual level, KI participants indicated that crystal methamphetamine was used by some GBM to reduce the effects of internalised stigma. At the network level, KIs thought that some drugs and types of use could attract more stigma and that this could erode support from GBM networks for men who use crystal. KIs felt that few “mainstream” organisations could provide appropriate services for GBM who use crystal and furthermore, that there was significant work to “undo” misperceptions of the harms of crystal use. At the policy level, mass media anti-drug campaigns were seen to be a significant generator of stigma with irrelevant and patronising messages that lacked useful information. Efforts to reduce stigma about crystal methamphetamine use amongst GBM must address individual, network, organisation and policy issues and be underpinned by understandings of social power in relation to sex, sexuality, drug use, infectious status and sexual minorities
Recommended from our members
Are individuals more risk and ambiguity averse in a group environment or alone? Results from an experimental study
Most decision-making research in economics focuses on individual decisions. Yet, we know, from psychological research in particular, that individual preferences can be sensitive to social pressures. In this paper, we study the impact of a group environment on individual preferences for risky (i.e., known probabilities) and ambiguous (i.e., unknown probabilities) prospects. In our experiment, each participant was invited to make a series of lottery-choice decisions in two different conditions. In the Alone condition, individuals made private choices, whereas in the Group condition, individuals belonged to a three-person group and group members' choices were aggregated according to either a majority or unanimity rule. This design allows us to study the impact of a group environment on individuals' attitude towards both risky and ambiguous prospects, while controlling for the decision rule used in the group. Our experimental results show that when individuals are in the Group condition, they tend to be less risk averse and more ambiguity averse than when they are not part of a group (Alone condition). Our experiment also suggests that the decision rule matters as it shows that these two trends tend to be stronger when the group implements a unanimity rule. Specifically, we found that individuals who belong to a group implementing a unanimity rule are significantly less risk averse than individuals who belong to a group that relies on the majority rule. We obtained a similar-but non-significant-result under ambiguity
Time preferences and risk aversion: tests on domain differences
The design and evaluation of environmental policy requires the incorporation of time and risk elements as many environmental outcomes extend over long time periods and involve a large degree of uncertainty. Understanding how individuals discount and evaluate risks with respect to environmental outcomes is a prime component in designing effective environmental policy to address issues of environmental sustainability, such as climate change. Our objective in this study is to investigate whether subjects' time preferences and risk aversion across the monetary domain and the environmental domain differ. Crucially, our experimental design is incentivized: in the monetary domain, time preferences and risk aversion are elicited with real monetary payoffs, whereas in the environmental domain, we elicit time preferences and risk aversion using real (bee-friendly) plants. We find that subjects' time preferences are not significantly different across the monetary and environmental domains. In contrast, subjects' risk aversion is significantly different across the two domains. More specifically, subjects (men and women) exhibit a higher degree of risk aversion in the environmental domain relative to the monetary domain. Finally, we corroborate earlier results, which document that women are more risk averse than men in the monetary domain. We show this finding to, also, hold in the environmental domain
Cohabitation in Brazil : historical legacy and recent evolution
The availability of the micro data in the IPUMS samples for several censuses spanning a period of 40 years permits a detailed study of differentials and trends in cohabitation in Brazil than has hitherto been the case. The gist of the story is that the historical race/class and religious differentials and the historical spatial contrasts have largely been maintained, but are now operating at much higher levels than in the 1970s. During the last 40 years cohabitation has dramatically increased in all strata of the Brazilian population, and it has spread geographically to all areas in tandem with further expansions in the regions that had historically higher levels to start with. Moreover, the probability of cohabiting depends not only on individual-level characteristics but also on additional contextual effects operating at the level of meso-regions. The rise of cohabitation in Brazil fits the model of the "Second demographic transition", but it is grafted onto a historical pattern which is still manifesting itself in a number of ways
A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions
Background
Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed.
Results
Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted.
Conclusions
Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively
Eliciting ambiguity aversion in unknown and in compound lotteries: A smooth ambiguity model experimental study.
Coherent-ambiguity aversion is defined within the (Klibanoff et al., Econometrica 73:1849–1892, 2005) smooth-ambiguity model (henceforth KMM) as the combination of choice-ambiguity and value-ambiguity aversion. Five ambiguous decision tasks are analyzed theoretically,where an individual faces two-stage lotteries with binomial, uniform, or unknown second-order probabilities. Theoretical predictions are then tested through a 10-task experiment. In (unambiguous) tasks 1–5, risk aversion is
elicited through both a portfolio choice method and a BDM mechanism. In (ambiguous) tasks 6–10, choice-ambiguity aversion is elicited through the portfolio choice method, while value-ambiguity aversion comes about through the BDM mechanism. The behavior of over 75% of classified subjects is in line with the KMM model in all tasks 6–10, independent of their degree of risk aversion. Furthermore, the percentage of coherent-ambiguity-averse subjects is lower in the binomial than in the uniform and in the unknown treatments, with only the latter difference being significant. The most part of coherent-ambiguity-loving subjects show a high risk aversion
Soil resource supply influences faunal size–specific distributions in natural food webs
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons—An MLST Based Staphylococcus aureus Typing Scheme
High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G↔A, G↔T, C↔A, C↔T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 “melt types” (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs
- …