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Abstract Coherent-ambiguity aversion is defined within the (Klibanoff et al., Econo-
metrica 73:1849–1892, 2005) smooth-ambiguity model (henceforth KMM) as the
combination of choice-ambiguity and value-ambiguity aversion. Five ambiguous deci-
sion tasks are analyzed theoretically, where an individual faces two-stage lotteries with
binomial, uniform, or unknown second-order probabilities. Theoretical predictions are
then tested through a 10-task experiment. In (unambiguous) tasks 1–5, risk aversion is
elicited through both a portfolio choice method and a BDM mechanism. In (ambigu-
ous) tasks 6–10, choice-ambiguity aversion is elicited through the portfolio choice
method, while value-ambiguity aversion comes about through the BDM mechanism.
The behavior of over 75 % of classified subjects is in line with the KMM model in all
tasks 6–10, independent of their degree of risk aversion. Furthermore, the percentage
of coherent-ambiguity-averse subjects is lower in the binomial than in the uniform
and in the unknown treatments, with only the latter difference being significant. The
most part of coherent-ambiguity-loving subjects show a high risk aversion.
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1 Introduction

This paper proposes a series of ten experimental decision tasks involving two-outcome
lottery choices. Five of these tasks are aimed at eliciting a subject’s attitude toward risk,
and the other five are designed to study her attitude toward ambiguity. Specific theo-
retical predictions about a subject’s behavior in the latter decision tasks are obtained,
by relying on the Klibanoff et al. (2005) smooth ambiguity model (henceforth KMM).
The paper has three main goals.

The first objective is to propose a simple experimental method able to make
KMM operational in individual decision tasks. To this purpose, the experimen-
tal environment is explicitly designed in order to match KMM intuition of mod-
eling ambiguity through two-stage lotteries. In such an environment, two dif-
ferent operational definitions of ambiguity aversion are provided. The first one,
namely value-ambiguity attitude, is based on Becker and Brownson (1964) idea
that “individuals are willing to pay money to avoid actions involving ambigu-
ity” (p. 5).1 A value-ambiguity-averse subject values an ambiguous lottery less
than its unambiguous equivalent with the same mean probabilities. In the KMM
model, this is true if the subject’s φ function is concave. The second defini-
tion, namely choice-ambiguity attitude, relies on Gollier (2012) intuition that more
ambiguity-averse subjects should have a smaller demand for a risky asset whose
distribution of returns is ambiguous. It should be noted that a portfolio contain-
ing a larger share invested in the risky asset may be seen as a two-stage lot-
tery where second-order objective probabilities are more dispersed. In the KMM
framework, Gollier (2012) has shown that an ambiguity-averse subject might have
a larger demand for the risky asset than another ambiguity-neutral subject with
the same risk aversion, thereby deducting that a value-ambiguity averse subject is
not necessarily choice-ambiguity averse. On the other hand, Gollier (2012) pro-
vides a set of sufficient conditions on the structure of the two-stage uncertainty
to re-establish the link between the concavity of φ and choice-ambiguity aversion.
Given that one of these sufficient conditions is satisfied in our experimental deci-
sion tasks, an equivalence between value-ambiguity attitude and choice-ambiguity
attitude is expected, and defined as coherent-ambiguity attitude within the KMM
framework.

The second objective of the paper is to check behavioral predictions obtained within
the KMM model in the five decision tasks aimed at studying a subject’s ambiguity atti-
tude. In all ambiguous decision tasks, the subject always faces the same two (second-
stage) lottery outcomes. Thus, within the same treatment, each ambiguous task differs
from the next one only because of the level of ambiguity of the decision setting and/or

1 After Becker and Brownson (1964), the idea that information which reduces ambiguity has a positive
value for ambiguity-averse subjects has been clearly stated within different decision-theoretic models, e.g.,
Quiggin (2007), using Machina (2004) concept of almost-objective acts; Attanasi and Montesano (2012),
relying on the Choquet expected utility model. Moreover, focusing on a specific adaptation of KMM, Snow
(2010) has proved that the value of information that resolves ambiguity increases with greater ambiguity
and with greater ambiguity aversion. Attanasi and Montesano (2012) have obtained similar results within
the Choquet model.
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because of a first-degree stochastic improvement in the distribution of second-order
probabilities. In particular, these tasks are designed in such a way that once a sub-
ject has been classified as coherent-ambiguity-averse, coherent-ambiguity-neutral, or
coherent-ambiguity-loving, the sign of the variation of her certainty equivalent from
one task to the next one should depend only on this classification. Therefore, this sign
should be predicted directly by the “sign” of her attitude toward ambiguity as deter-
mined within KMM. This means that, by construction, the verification of our main
theoretical predictions in these tasks should be independent of the subject’s degree of
risk aversion as elicited in the five unambiguous tasks. Finding an effect of risk attitude
over the behavioral verification of our theoretical hints would raise some doubts on
the use of KMM as reference model for the tasks proposed in our experiment. The
elicitation of risk attitude is also important in order to empirically ascertain whether it
influences the “sign” of the ambiguity attitude, i.e., which one of the three ambiguity
attitudes (aversion, neutrality, or proneness) the subject will show. Our design is also
aimed at finding whether this “sign” may depend on the riskiness of the second-stage
lottery, i.e., on the spread of the difference of its two outcomes. In order to be con-
sistent in the elicitation of risk attitude and of ambiguity attitude, the same pair of
instruments are used for both attitudes. In particular, risk attitude is elicited through
both a portfolio choice method and a Becker et al. (1964) mechanism (henceforth
BDM). Correspondingly, choice-ambiguity aversion is established through the first
method and value-ambiguity aversion through the second one. The combination of
the two instruments has a twofold role. For risk attitude, it allows to check that both
instruments lead to similar subjects’ orderings. For ambiguity attitude, it affords to
elicit separately the two features of (coherent)-ambiguity attitude introduced above
within KMM. Concerning risk attitude, once the correlation between the two risk-
aversion orderings has been verified, the results of the portfolio choice method are
relied upon: this has the advantage of imposing some theoretically derived constraints
which allow to check whether the subject’s selected portfolio is compatible with a
constant absolute and/or a constant relative risk aversion specification. Concerning
ambiguity attitude, throughout the paper we consider as “classified subjects” only
those who provide coherent answers under the two instruments. This provides a ratio-
nale for the term “coherent” to identify the kind of ambiguity attitude studied in this
paper.

The third objective of the paper is to analyze how subjects’ decisions under ambi-
guity react to different distributions of second-order probabilities. The experiment
consists of three treatments, according to a between-subject design. The five unam-
biguous tasks do not vary among treatments, while the ambiguous tasks are different
for each treatment, in the way in which uncertainty over the composition of the urns
used to perform them is generated. More precisely, the first of these tasks relies on a
10-ball small urn containing white and orange balls; subjects are not told its composi-
tion. In all treatments said composition is generated through a random draw from a big
urn, introduced in order to mimic KMM two-stage lottery approach. In treatment 1,
the composition of the 10-ball small urn is determined through a Bernoullian process
over a 50-white-50-orange balls big urn, thereby leading to a binomial distribution
of second-order probabilities. In treatment 2, subjects are shown that second-order
probabilities over the composition of the 10-ball small urn are uniformly distributed.
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In treatment 3, subjects have no information about the composition of the 10-ball small
urn, although—to make it comparable to treatment 1—ambiguity is generated through
a two-stage lottery procedure similar to the one of the binomial treatment, though with
no information provided about the composition of the big urn. The uniform distribution
of the second-order probabilities in treatment 2 is clearly a mean-preserving spread
of the binomial distribution obtained in treatment 1. Treatment 3 is intrinsically more
ambiguous than treatment 1. Therefore, under ambiguity aversion, it is expected that
in the first ambiguous task of both the uniform and the unknown treatment, the subject
will assign a lower value to the ambiguous lottery than in the corresponding task of the
binomial treatment. This should also happen in the remaining ambiguous tasks, pro-
vided, once the 10-ball small urn is generated, the way its composition is “modified” in
order to vary the level of ambiguity and the distribution of second-order probabilities
is the same in each treatment. Although our design is not within-subject, the above-
stated predictions can be checked by comparing the distribution of subjects’ decisions
in the ambiguous tasks of the three treatments. This treatment comparison would hold
only under the assumption that the distribution of subjects’ degree of risk aversion
does not differ among the three treatments. This is an additional reason for eliciting
risk attitude before looking at subjects’ decisions in the ambiguous tasks.

The rest of the article is structured as follows. Section 2 describes the experimental
design, by highlighting the motivations behind the ten decision tasks. Section 3 ana-
lyzes the five decision tasks under ambiguity and presents the main theoretical results.
Section 4 presents the results of our experiment. In Sect. 5, the experimental design
and results are discussed within the experimental literature on ambiguity aversion.
Section 6 concludes.

2 Experimental design

Experimental subjects were graduate students in Economics of the Toulouse School of
Economics (TSE). Computerized sessions were conducted at the Laboratory of Exper-
imental Economics of TSE. A total of 105 (42 women, 63 men, average age = 23.70)
participated in our experiment, with each subject participating only once. Average
earnings were approximately C= 20.50 per subject, including a C= 5.00 show-up fee. The
experiment was programed using the z-Tree software (Fischbacher 2007) and subjects
were seated in isolated cubicles in front of computer terminals. Three treatments were
run through a between-subject design, with the same number of subjects (N = 35)
participating in each treatment. The number of subjects in each session varied from a
minimum of 9 to a maximum of 18.2

The experiment consists of ten decision tasks per treatment.3 At the beginning of
the experiment, participants were told the number of tasks. However, instructions for
every new task were given and read aloud only prior to that task. After instructions

2 For treatment 1, two sessions were run, respectively, with 17 and 18 students. Treatment 2 had three
sessions, respectively, with 16, 10, and 9 students. Treatment 3 also had three sessions, respectively, with
12, 10, and 13 subjects.
3 Experimental instructions are available upon request.
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Table 1 Main features of the ten decision tasks

 All Treatments Treatment 1 Treatment 2 Treatment 3
Task Elicitation Method Features of the lotteries Task
1-4 Portfolio Choice 1-4 
5 BDM mechanism 

Simple Lottery 
5 

6-9 BDM mechanism 6-9 
10 Portfolio Choice 

Binomial  
Compound Lottery

Uniform  
Compound Lottery

Unknown 
(Compound) Lottery 10 

Table 2 Portfolio choice in
tasks 1–4: pairs of lottery
outcomes

Task t = 1 Task t = 2 Task t = 3 Task t = 4

x j
1 x j

1 x j
2 x j

2 x j
3 x j

3 x j
4 x j

4

Lottery j = A 12 6 11 6 20 14 19 14

Lottery j = B 16 4 14 4 24 12 22 12

Lottery j = C 20 2 17 2 28 10 28 8

Lottery j = D 24 0 20 0 32 8 34 4

were read aloud, the decision task appeared on the screen, and participants had
3 minutes to answer the task. The average duration of the experiment was 65 minutes,
including construction of the “unknown” small urns (only for treatment 1 and 3), per-
formance of one over the ten tasks and participants’ final payment. The final payment
of each participant depended only on the choice made by this participant in the ten
decision tasks and on some random draws which are explained furth er below. Only
one of the ten decision tasks was randomly selected at the end of the experiment to
determine participants’ final earnings.

The ten tasks in the experimental design differ in terms of the elicitation method
applied and/or of the scope of that elicitation (see Table 1). Tasks 1–5 do not vary
among treatments, while tasks 6–10 are different for each treatment in the way in
which uncertainty over the composition of the urns is generated.

In each task from 1 to 4, the experimental subject is shown the same transparent
small urn with 5 white balls and 5 orange balls inside. She is asked to choose among
four simple lotteries of the type l j

t = (x j
t , 0.5; x j

t , 0.5), with x j
t , x j

t ∈ R+, x j
t > x j

t
for each j and t , where j = A, B, C, D indicates the four lotteries in each task and
t = 1, 2, 3, 4 indicates the task (see Table 2). All l j

t in the four tasks rely on the same
5–5 balls small urn, with white balls assigned to the highest of the two outcomes, x j

t .
Each l j

t differs from the other fifteen lotteries proposed in the four tasks in terms of
both expected value and standard deviation. In particular, in each of the four portfolio
choices, the higher the index j of the lottery, the higher both its expected value and its
standard deviation (see Table 7 in the Appendix). Let jt ∈ {A, B, C, D} be the index
of the lottery chosen by the subject in task t ∈ {1, 2, 3, 4}. If a task t between 1 and
4 is selected to be paid at the end of the experiment, the subject plays for the pair of
outcomes she has chosen in that task, namely x jt

t and x jt
t . She is paid x jt

t if a white
ball is randomly drawn from the 5–5 balls small urn and x jt

t otherwise.
Tasks 1–4 are called “portfolio choices” because the random outcome parallels the

outcome of a portfolio with one risk-free asset and one risky asset. Indeed, the outcome
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Table 3 Reinterpretation of the
lottery choices into portfolio
choices for tasks 1–4

wt yt y
t

α
j=A
t α

j=B
t α

j=C
t α

j=D
t

Task t = 1 8 4 −2 1 2 3 4

Task t = 2 8 3 −2 1 2 3 4

Task t = 3 16 4 −2 1 2 3 4

Task t = 4 16 3 −2 1 2 4 6

l j t
t of choice j in task t can be written as (wt −α

j
t )(1+r f )+α

j
t (1+ ỹt ), where wt can

be interpreted as the initial wealth in task t , and α
j
t is the euro investment in the risky

asset: r f is the risk-free rate that is always normalized to 0, and ỹt is the return of the
risky asset in task t. The return of the risky asset can take two possible values yt and
y

t
with equal probabilities. In Table 3, the portfolio contexts and portfolio choices in

the four tasks are reinterpreted.
In task 5, the subject is assigned the same pair of lottery outcomes she has chosen

in task 4, namely x j4
4 and x j4

4 . The same 5–5 balls small urn of tasks 1–4 is used, with

white balls again assigned to x j4
4 , in order to build the lottery l j4

4 = (x j4
4 , 0.5; x j4

4 , 0.5).
Therefore, the subject’s “initial endowment” in task 5 is her preferred lottery in task
4. In task 5, the subject has the possibility to sell l j4

4 through a BDM mechanism.4

She is asked to state the smallest price at which she is willing to sell l j4
4 , by setting a

price between x j4
4 and x j4

4 . This reservation price should provide an approximation of

the subject’s certainty equivalent of l j4
4 . The BDM mechanism here used is very close

to the one implemented by Halevy (2007). Differently from Halevy (2007), however,
there are four lotteries l j

4 for which a subject may state her reservation price and
the set of possible “buying/selling prices” is discrete. The discreteness of the set of
possible “buying/selling prices” is due to the fact that the BDM mechanism used here
is implemented through real tools, as every instrument in our experimental design.
Indeed, as will be shown below, in this experiment none of the random draws from
any urn is computerized. In the same spirit of concreteness, for each lottery l j4

4 chosen
in task 4, there is a different envelope containing a finite set of numbered tickets.
A random draw of a numbered ticket from this envelope gives the buying price for
lottery l j4

4 .5

4 Given that the subject has to set the price at which to sell a random “initial endowment”, she is assigned
a lottery that she has just declared to prefer among four possible lotteries (task 4). Therefore, her “initial
endowment” in task 5 (and, as will be shown, in tasks 6–9) depends on the choice made in task 4, although
the subject does not know this in task 4.
5 More specifically, there are four different envelopes, labeled respectively with letter A, B, C and D, i.e.,
one for each lottery available in task 4. Each of these envelopes contains eleven different numbered tickets.
The distance between two subsequent numbers on the tickets in an envelope is the same, so as to have the

same number of tickets in each envelope, with the lowest numbered ticket being equal to x j
4 and the highest

being equal to x j
4. In particular, the eleven tickets inside envelope A are 14, 14.5, . . . , 18.5, 19 ; those inside

envelope B are 12, 13, . . . , 21, 22; those inside envelope C are 8, 10, . . . , 26, 28; those inside envelope D

are 4, 7, . . . , 31, 34. The eleven tickets in envelope j represent the set of possible prices of lottery l
j4
4 ,

with j = A, B, C, D. A ticket is randomly drawn from each envelope. The ticket drawn from envelope j
determines the random “buying price” for lottery j . Then, without knowing this price, the subject states
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In each of the tasks 6–9, the subject is also assigned the same pair of lottery outcomes
that she has chosen in task 4, with white balls again assigned to x j4

4 , and she is given the
possibility to sell the respective lottery through the same BDM mechanism as in task
5. In particular, the subject is told that, in each task from 6 to 9, the “buying prices” for
the four lotteries are, respectively, the same four numbered tickets randomly drawn
at the beginning of task 5. Therefore, albeit unknown to the subject, the reference
“buying price” for the assigned lottery is the same in tasks 5–9. Furthermore, the set
of possible selling prices for each lottery is also maintained constant throughout tasks
5–9. However, the 10-ball small urn used to determine the likelihood of x j4

4 and of x j4
4

in tasks 6–9 is not the same as in tasks 1–5.
Indeed, the three treatments differ in the way in which the composition of the 10-

ball small urn used to perform task 6 is determined. In Fig. 1 below, implementation
of task 6 in each of the three treatments is described. More specifically:

• Treatment 1: Binomial. The 10-ball small urn used to perform task 6 is generated
from a transparent big urn containing 50 white balls and 50 orange balls. At the
beginning of task 6, 10 balls are randomly drawn (one after the other, with replace-
ment) from the big urn. The colors of these 10 balls determine the composition of
the 10-ball small urn. The outcomes of the 10 random draws are not shown to the
subject. Therefore, at the moment when the subject states her reservation price in
task 6, the composition of the unknown small urn is a binomial random variable
taking 11 possible values.

• Treatment 2: Uniform. At the beginning of task 6, each subject is shown a trans-
parent construction urn6 containing 11 transparent small urns of 10 balls each.
Each of the 11 small urns has a different composition in terms of white and orange
balls. One of the 11 small urns would be randomly drawn from the construction urn.
Therefore, at the moment when the subject states her reservation price, the compo-
sition of the unknown small urn is a (discrete) uniform random variable taking 11
possible values.

• Treatment 3: Unknown. The 10-ball small urn used to perform task 6 is gener-
ated from an opaque big urn containing 100 white and orange balls with unknown
composition. As in treatment 1, at the beginning of task 6, 10 balls whose color
determines the composition of the 10-ball small urn are randomly drawn (one after
the other, with replacement) from the big urn. The outcomes of the 10 random draws
are not shown to the subject. Therefore, the subject states her reservation price in
task 6 without having any information about the composition of the unknown small

Footnote 5 continued
her smallest selling price (reservation price) for her lottery l

j4
4 , by choosing one among the eleven possible

prices for lottery j . In case task 5 is selected for payment at the end of the experiment, the following
happens: if, for the lottery the subject owned in task 5, the subject’s smallest selling price is lower than the
respective random “buying price”, the subject sells her lottery and is paid the latter price. Otherwise, she

will have to play her lottery, and her payoff (x j4
4 or x

j4
4 ) will depend on the ball randomly drawn from the

small urn.
6 The term “construction urn” is borrowed from Klibanoff et al. (2012). Epstein (2010) calls this “second-
order urn”.
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100 balls 

white or orange  

50 white balls  

50 orange balls 
Random draw 
of 10 balls

Random draw 
of one ball

10 balls 

w or o

Payment Subject’s 
Choice 

Random draw 
of 10 balls

Random draw 
of one ball

10 balls 

w or o

Payment Subject’s 
Choice 

8 w - 2 o

6 w - 4 o
7 w - 3 o

5 w - 5 o

1 w - 9 o0 w - 10 o

2 w - 8 o

3 w - 7 o

4 w - 6 o

10 w - 0 o

9 w - 1 o
Random draw 
of 1 small urn

Random draw 
of one ball

Payment Subject’s 
Choice 

# w - # o

Treat 1:               

Binomial

Treat 2:               

Uniform

Treat 3:               

Unknown

If Task 6 is selected at the 
end of the experiment: 

If Task 6 is selected at   the 
end of the experiment:

If Task 6 is selected at   
the end of the experiment:

Fig. 1 Implementation of task 6 in each treatment

urn. The reason why ambiguity is generated through a two-stage lottery is to make
this treatment comparable to treatment 1.

Tasks 7–9 involve the elimination of some possible compositions of the 10-ball
unknown small urn used to perform task 6. At the beginning of task 7, the subject is
told that, if this task were to be performed at the end of the experiment, the number of
white balls in the unknown small urn would be between 3 and 7 (and so the number
of orange balls). This would be implemented in the following way. In treatment 1 and
treatment 3, 6 balls will be taken out of the unknown small urn constructed at the
beginning of task 6 and replaced with 3 white balls and 3 orange balls. In treatment
2, six transparent small urns (the three with less than 3 white balls and the three with
less than 3 orange balls) will be taken out of the transparent construction urn. Task 8
(9) differs from task 7 only for the fact that in the unknown small urn, the number of
white (orange) balls will be between 3 and 10.

In each of the tasks 6–9 the subject, besides stating her reservation price for the
lottery resulting from the corresponding unknown small urn, is also asked to guess the
number of white balls in that urn. In case a task from 6 to 9 is randomly selected to be
performed at the end of the experiment, the subject is paid an additional C= 5.00 if her
guess of the number of white balls in the unknown small urn of that task is correct.

Finally, task 10 is the same as task 4 in terms of the elicitation method (portfolio
choice) and in the set of possible pairs of outcomes among which the subject has
to pick one. However, the 10-ball small urn used to determine the likelihood of the
chosen pair, namely x j10

10 and x j10
10 , is the same unknown small urn as in task 6.
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It should be noted that the subject in each task has no feedback about any random
draw performed in any of the previous tasks.7 This is because only one of the tasks
is selected and actually performed and only at the end of the experiment.8 Therefore,
in our experimental design, the subject cannot make any updating either about the
actual composition of the unknown small urns or about the random “buying prices”
in the BDM mechanism. Also, in each session, all the urns are real urns (not comput-
erized), and all the random draws in the experiment (construction of the small urns,
random “buying prices” in the BDM mechanism, selection of the task determining a
subject’s final earnings, performance of this task) are executed by one of the subjects
(indicated in the experimental instructions as the “drawer”). This subject is randomly
chosen before the beginning of the experiment among the subjects showing up for the
experimental session. He/she does not participate in the experiment and is paid a fix
amount of money ($ 20.00) independent of his/her random draws. The reason why
we opted for a human random “drawer” instead of computerized random draws is to
make participants in the experiment aware that no manipulation from the experimenter
is possible in any of the random draws characterizing the experimental setting. This
was especially important for the random composition of the unknown small urn used
for task 6 and the following tasks.9 Indeed, the physical implementation of all the

7 The ten decision tasks are shown to the subject always in the same order. The reason why tasks 1–5
(which rely on the 5–5 balls small urn) are proposed always before tasks 6–10 is to elicit the subject’s risk-
aversion before introducing unknown/multiple small urns. About task 5 coming before tasks 6–9, Halevy
(2007) has shown that the (usually) higher reservation price for the 5–5 balls small urn (task 5 here) is not a
consequence of this urn being proposed before the unknown/multiple ones (tasks 6–9 here). Finally, about
the order of tasks 6–9, our theoretical results for the subject’s reservation price in tasks t = 6, . . . , 9 do
not suggest that this price should be always increasing or always decreasing with t . Rather, the trend of
the subject’s reservation price over tasks 6–9 should depend on the “sign” of her attitude toward ambiguity
(e.g., see (5) and (7) below). A similar argument holds for task 4 always coming before task 10: different
signs of the ambiguity attitude lead to different predictions about if and how the subject’s choice varies
between the two tasks.
8 For tasks 1–4 and 10, performing the task means playing the chosen lottery (random draw of one ball
from the 10-ball small urn). For tasks 5–9, it means playing the assigned lottery only if the subject’s selling
price is not lower than the random “buying price” for that lottery.
9 More specifically, in treatment 1, the drawer is given the chance to check (in front of all experimental
subjects in the session) that the number of white and orange balls in the transparent big urn is 50-50. Then,
together with the transparent big urn, he/she is brought by the experimenter behind a screen where he/she
performs the random draw of 10 balls (one after the other, with replacement) from the big urn. The screen
being inside the laboratory, experimental subjects can “listen” to the random draw but they cannot see the
color of the ten randomly drawn balls. After each of the ten random draws, the drawer shows the ball to
the experimenter, records its color on a paper sheet, and puts the ball back in the urn. At the end of the
ten random draws, the drawer puts 10 balls in an opaque small urn according to the colors recorded on the
paper sheet, comes out from behind the screen and shows the opaque small urn to all experimental subjects
in the session (they are informed about this procedure before it takes place). Then, he/she places the opaque
small urn on a table in front of all experimental subjects and task 6 begins. At the end of the experiment,
if task 6 is randomly selected (by the drawer him/herself) to determine participants’ final earnings, the
drawer randomly draws one of the 10 balls from the opaque small urn. If the randomly selected task is
one among tasks 7–9, the drawer will eliminate some possible compositions of the 10-ball opaque small
urn (according to the rules specified above) before randomly drawing one of the 10 balls. The procedure
in treatment 3 is as in treatment 1 apart from two features. First, the big urn is opaque and neither the
drawer nor any experimental subject in the session may check the number of white and orange balls in the
opaque big urn (although this urn is shaken by the drawer in front of everybody to show that there are many
balls inside). Second, before the beginning of the experiment the opaque big urn is placed on a table in
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procedures described in Fig. 1 for each treatment was necessary to guarantee that the
experimenter cannot (and cannot be seen to) manipulate the implementation of the
“ambiguity” device and that the information available about this device is the same
for all subjects.

3 Theoretical predictions

We use Klibanoff et al. (2005) smooth ambiguity model (henceforth KMM) as a gen-
eral framework. Therefore, we assume that the subject’s preferences are represented
by the von Neumann–Morgenstern Expected Utility (henceforth EU) function for
simple lotteries, and we relax reduction between first and second-order probabilities
in two-stage lotteries in order to account for multiplicity/uncertainty of the possible
compositions of the second-stage lottery.

The following are our predictions about the subject’s behavior in the first half of
the experimental design, i.e., in the five tasks aimed at estimating her degree of risk
aversion. These five tasks only involve simple lotteries.

Tasks 1–4 rest on the well-known result in expected utility theory (e.g., Pratt 1964)
that the value of a simple lottery decreases if the subject’s risk aversion increases.
The value of a simple lottery l with possible returns X is measured by its certainty
equivalent CE(l), which is defined by the following condition:

u(CE(l)) = EU(X),

where it is assumed that the utility function u is increasing and that it is concave
for risk-averse subject and convex for risk-loving ones. From the previous relation,
it derives that CE(l) decreases if the concavity of u increases in the sense of Arrow-
Pratt. This implies that, for any task 1–4, an increase in risk aversion will never induce
the subject to select a riskier lottery (in our case, a lottery with more exposure to the
risky asset). Given the fact that lotteries A, B, C, D correspond to different portfolios
with an increasing exposure to the risky asset, it is also known from Arrow (1964)
that preferences are unimodal in (A, B, C, D). Thus, if for example C is preferred
to B, it is also the case that it is preferred to A. If one limits the analysis to a set of

Footnote 9 continued
front of all experimental subjects and the drawer makes a preliminary random draw from a transparent
2-ball urn containing 1 white ball and 1 orange ball. The color of the randomly drawn ball is assigned to the
highest of the two outcomes in each lottery in all the ten tasks of the experiment. Then, before the beginning
of task 6 the drawer uses the opaque big urn to determine the composition of the 10-ball opaque small urn,
according to the same random draw procedure of treatment 1. In treatment 2 the drawer is given the chance
to check (in front of all experimental subjects in the session) the composition of each of the 11 transparent
small urns inside the transparent construction urn. Then, he/she places this big “urn of all urns” on a table
in front of all experimental subjects and task 6 begins. At the end of the experiment, if task 6 is randomly
selected (by the drawer him/herself) to determine participants’ final earnings, the drawer will first randomly
draw one of the 11 transparent small urns from the transparent big urn and then randomly draws one of the
10 balls from this small urn. If the randomly selected task is one among tasks 7–9, the drawer will take out
of the transparent big urn some of the 11 transparent small urns (according to the rules specified above)
before randomly drawing one of the remaining ones from the transparent big urn.
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Table 4 Optimal answers for tasks 1–4 under CARA

Predicted pattern under CARA Experimental Data

Intervals of ARA Pattern
(l

j1
1 , l

j2
2 , l

j3
3 , l

j4
4 )

Index
CARA

Tr. 1 Tr. 2 Tr. 3 All % TOT

0.077 < ARA < +∞ (A, A, A, A) 9 1 3 0 4 7.41

0.054 < ARA < 0.077 (B, A, B, A) 8 0 3 2 5 9.26

0.046 < ARA < 0.054 (B, B, B, B) 7 2 3 4 9 16.67

0.033 < ARA < 0.046 (C, B, C, B) 6 1 3 1 5 9.26

0.032 < ARA < 0.033 (D, B, D, B) 5 2 0 1 3 5.56

0.027 < ARA < 0.032 (D, C, D, B) 4 0 2 0 2 3.70

0.023 < ARA < 0.027 (D, C, D, C) 3 2 0 1 3 5.56

0.016 < ARA < 0.023 (D, D, D, C) 2 7 1 2 10 18.52

−∞ < ARA < 0.016 (D, D, D, D) 1 3 6 4 13 24.07

No. of observations 18 21 15 54

% Explained 51 60 43 51

utility functions that can be ordered by a single risk aversion parameter, this allows
to compute for each task three critical degrees of risk aversion, one for indifference
between the least risky lottery A and the riskier lottery B, one for indifference between
lotteries B and C , and one for indifference between lotteries C and D.

Suppose first that the subject has Constant Absolute Risk Aversion (henceforth
CARA), so that u(c) = 1 − exp(−ARAc) for all c. Under this specification, one can
compute for task 1 the critical ARAAB

1 that yields indifference between lotteries A
and B:

1

2
exp(−ARAAB

1 x A
1 ) + 1

2
exp(−ARAAB

1 x A
1 ) = 1

2
exp(−ARAAB

1 x B
1 ) + 1

2
exp(−ARAAB

1 x B
1 )

From the above formula, ARAAB
1 = 0.077. A similar method can be used for the

other pairs of lotteries (B, C) and (C, D), and for the other tasks 2, 3, and 4. Under
CARA, it is well known (e.g., Gollier 2001) that the optimal portfolio composition
is independent of initial wealth. From Table 3, it can be shown that tasks 1 and 3
correspond to the same portfolio problem, but with different initial wealth levels,
respectively, equal to w1 = 8 and w3 = 16. This implies that ARA j, j+1

1 = ARA j, j+1
3

for all pairs of lotteries ( j, j + 1). In other words, a CARA subject should answer
in exactly the same way for these two tasks. A similar o4bservation can be made
for tasks 2 and 4 (see Table 4). The interpretation of Table 4 is the following: if the
subject’s ARA is inside the interval (0.054, 0.077), then she should pick the pattern
(l j1

1 , l j2
2 , l j3

3 , l j4
4 ) = (B, A, B, A) in the four portfolio choice problems, and here,

CARA index is 8. Notice that the higher the subject’s degree of risk aversion, the
higher her CARA index, the less risky is the pattern she chooses. Table 4 shows that
in our experiment, more than 1/2 of subjects select lotteries in tasks 1–4 in a way
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that is compatible with CARA.10 Results of the elicitation are provided disentangled
by treatments in order to show possible differences in the distribution of the CARA
ordering among the three subject pools. Indeed, although the percentage of explained
patterns is higher for subjects participating in treatment 2, no significant difference is
found in the distribution of CARA ordering in the three treatments (see Sect. 4.1).

Now suppose that the subject has Constant Relative Risk Averse (henceforth CRRA),
so that u(c) = c1−RRA/(1 − RRA) for all c. Under this specification, one can compute
for task 1 the critical RRAAB

1 that yields indifference between lotteries A and B:

1

2

(

x A
1

)1−RRAAB
1 + 1

2

(

x A
1

)1−RRAAB
1 = 1

2

(

x B
1

)1−RRAAB
1 + 1

2

(

x B
1

)1−RRAAB
1

From the above formula, RRAAB
1 = 1.320. A similar method can be used for the other

pairs of lotteries (B, C) and (C, D), and for the other tasks 2, 3, and 4. In Table 5 CRRA
subjects are ordered according to their lottery choices in tasks 1–4. The interpretation
of Table 5 is the same as in Table 4, with RRA in place of ARA. Again, the higher
the subject’s degree of risk aversion, the higher her CRRA index, the less risky is the
pattern she chooses. Table 5 shows that, in our experiment, almost 3/4 of subjects have
a quadruplet of choices that is compatible with CRRA.11 Although the percentage of
explained patterns is lower for subjects participating in treatment 2, no significant
difference is found in the distribution of CRRA ordering in the three treatments (see
Sect. 4.1).

Tasks 1–4 have been designed such that both a CARA subject and a CRRA subject, in
order to show that she is not risk-averse (respectively, RRA ≤ 0 and ARA ≤ 0), should
pick the riskiest pattern (l j1

1 , l j2
2 , l j3

3 , l j4
4 ) = (D, D, D, D), thereby being assigned

(CARA or CRRA) index 1. That is why, independently from the assumption of CARA or
CRRA, if the number of explained patterns is the same under the two specifications, by
construction the same percentage of non-risk-averse subjects should be seen. Indeed,
we find that this percentage is the same under the two specifications, although CRRA
captures a higher number of patterns than CARA: around 1/4 of the explained patterns
are compatible with risk neutrality or risk proneness. This percentage is close to the
one found in other experimental studies on risk-attitude elicitation in simple lotteries.
Indeed, the whole distribution of RRA in Table 5 is very close to those in the real-payoff
tasks (Table 3, p. 1649) of Holt and Laury (2002) and of follow-up studies.12

10 When checking if a behavioral pattern in tasks 1–4 is compatible with CARA, we allow up to only

one possible deviation of at most one lottery l jt
t from each of the theoretical patterns. For example, we

assign a CARA index to pattern (B, C, B, B), namely index 7, but we assign no index to (B, D, B, B) or
to (C, C, B, B).
11 As for Table 4, when checking if a behavioral pattern in tasks 1–4 is compatible with CARA, we allow up

to only one possible deviation of at most one lottery l jt
t from each of the theoretical patterns. For example,

we assign a CRRA index to pattern (B, B, C, B), namely index 8, but we assign no index to (B, C, C, B)

or to (C, B, C, B).
12 Tasks 1–4 contain lotteries whose expected payoffs are between the expected (real) payoff of lotteries
1X and 20X in Holt and Laury (2002). Although RRA intervals are not perfectly coincident between
Table 5 in this paper and their Table 3, the similarity of results is impressive: our study finds 5.26 % of
subjects with RRA ∈ (1.320,+∞), and they find 1 % and 6 % of subjects with RRA ∈ (1.370,+∞),
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Table 5 Optimal answers for tasks 1–4 under CRRA

Predicted pattern under CRRA Experimental Data

Intervals of RRA Pattern
(l

j1
1 , l

j2
2 , l

j3
3 , l

j4
4 )

Index
CRRA

Tr. 1 Tr. 2 Tr. 3 All % TOT

1.320 < RRA < +∞ (A, A, A, A) 12 1 3 0 4 5.26

0.890 < RRA < 1.320 (A, A, B, A) 11 1 0 3 4 5.26

0.805 < RRA < 0.890 (A, A, B, B) 10 1 1 2 4 5.26

0.670 < RRA < 0.805 (A, A, C, B) 9 0 0 1 1 1.32

0.575 < RRA < 0.670 (B, A, C, B) 8 3 5 4 12 15.79

0.440 < RRA < 0.575 (B, A, D, B) 7 3 2 2 7 9.21

0.439 < RRA < 0.440 (B, A, D, C) 6 0 0 2 2 2.63

0.382 < RRA < 0.439 (B, B, D, C) 5 5 2 3 10 13.16

0.244 < RRA < 0.382 (C, B, D, C) 4 3 1 2 6 7.89

0.197 < RRA < 0.244 (C, C, D, D) 3 2 1 2 5 6.58

0.123 < RRA < 0.197 (D, C, D, D) 2 0 0 1 1 1.32

−∞ < RRA < 0.123 (D, D, D, D) 1 9 6 5 20 26.32

No. of observations 28 21 27 76

% Explained 80 60 77 72

Through the BDM mechanism proposed in task 5, a risk-averse (-loving) subject
should declare a certainty equivalent for l j4

4 —the simple lottery she has been assigned
in task 5—lower (higher) than its expected value, i.e.,

CE(l j4
4 ) < (>)EV(l j4

4 ).

Given that in task 5 the lottery assigned to the subject is the same she has chosen in
task 4, l j4

4 , the proposed portfolio choice problem provides a theoretical prediction on

CE(l j4
4 ) in task 5 both under CARA and under CRRA specification. Suppose that the

subject’s pattern in tasks 1–4 is compatible with CARA. Then, given her CARA index
h = 1, 2, . . . , 9, her ARA belongs to the interval (AR Ah, AR Ah) for each h. Hence,

given l j4
4 = (x j4

4 , 0.5; x j4
4 , 0.5), AR Ah , and AR Ah , it is

Footnote 12 continued
respectively, in the “1X real” and the “20X real” payoffs task (stay in bed); our study finds 5.26 % of
subjects with RRA ∈ (0.890, 1.320), and they find 3 % and 11 % of subjects with RRA ∈ (0.970, 1.370),
respectively, in “1X real” and “20X real” (highly-risk-averse); our study finds 63.16 % of subjects with
RRA ∈ (0.123, 0.890), and they find 62 % and 64 % of subjects with RRA ∈ (0.150, 0.970), respectively, in
“1X real” and “20X real” (from very-risk-averse to slightly-risk-averse); our study finds 26.32 % of subjects
with RRA ∈ (−∞, 0.123), and they find 34 % and 19 % of subjects with RRA ∈ (−∞, 0.150), respectively,
in “1X real” and “20X real” (from risk-neutral to highly-risk-loving). Notice also that the distribution of
RRA in Table 5 in this paper is not very different from 1X and 20X real-payoff single unordered tasks in Holt
and Laury (2005) and from 1X and 10X real-payoff single unordered tasks in Harrison et al. (2005). For
example, the percentage of non-risk-averse subjects (from risk-neutral to highly-risk-loving) under CRRA
in tasks 1–4 of our experiment (23.32 %) is between those found by Harrison et al. (2005) in 1X and 10X
real-payoff single unordered tasks (31.71 % and 12.73 %, respectively).
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CE(l j4
4 ; ARAh) = − 1

ARAh
ln

(

1

2
exp(−ARAh x j4

4 ) + 1

2
exp(−ARAh x j4

4 )

)

(1)

with ARAh = AR Ah, AR Ah . Then, it should be C E(l j4
4 ) ∈ (C E(l j4

4 ; AR Ah),

C E(l j4
4 ; AR Ah)). If the subject’s pattern in tasks 1–4 is compatible with CRRA,

then, given l j4
4 and her CRRA index k = 1, 2, . . . , 12 , her RRA belongs to the inter-

val (R R Ak, R R Ak) for each k. Hence, given l j4
4 = (x j4

4 , 0.5; x j4
4 , 0.5), R R Ak , and

R R Ak , it is

CE(l j4
4 ; RRAk) =

(

1

2
(x j4

4 )1−RRA + 1

2
(x j4

4 )1−RRA
) 1

1−RRA

(2)

with RRAk = RRAk, RRAk . Then, it should be CE(l j4
4 ) ∈ (CE(l j4

4 ; RRAk),

CE(l j4
4 ; RRAk)).

The subject’s optimal behavior in tasks 6–10 will be now analyzed.
Consider a two-stage lottery L where the second stage is represented by a set of

n + 1 lotteries ˜lθ ∼ (x1, p1θ ; . . . ; xS, pSθ ), with possible payoffs x1 > · · · > xS ,
θ ∈ {0, . . . , n}, psθ ≥ 0 and �S

s=1 psθ = 1. The first stage is represented by the
lottery L having as possible outcomes the second-stage lotteries˜lθ with probabilities
(q0, . . . , qn), with qθ ≥ 0 and �n

θ=0qθ = 1. These are the second-order probabilities
over the plausible probability distributions for˜lθ .

In all treatments of our experiment, the impact of information on the value of
lotteries is modeled in the KMM framework. Following KMM, it is assumed that the
subject’s ex ante utility is measured by:

u(CE(L)) = φ−1

(

n
∑

θ=0

qθφ(EU(˜lθ ))

)

(3)

with

EU(˜lθ ) =
S

∑

s=1

psθ u(xs).

Function u is a von Neumann-Morgenstern utility function, and φ captures the
subject’s smooth ambiguity attitude. In fact, φ is a von Neumann-Morgenstern index
function accounting for the attitude toward mean-preserving spreads in the induced
distribution of the expected utility of the one-stage lottery conditional to θ , namely
EU (˜lθ ). KMM define “smooth ambiguity aversion” and show that it is equivalent to
φ being concave. Therefore, it is equivalent to aversion to mean-preserving spreads
of the expected utility values induced by the second-order subjective probability and
lottery ˜lθ . Then, defining function v as v = φ ◦ u, the certainty equivalent of the
two-stage lottery is

CE(L) = v−1

(

n
∑

θ=0

qθ v(CE(˜lθ ))

)

, (4)
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where CE(˜lθ ) is the certainty equivalent of the one-stage lottery conditional to θ .
Function v is a von Neumann-Morgenstern index function accounting for the atti-
tude toward mean-preserving spreads in certainty equivalents of the one-stage lottery
conditional to θ , namely CE(˜lθ ).

In each task of our experiment, there are only two possible payoffs, namely x, x ∈
R+, x > x . Therefore, the small urn is represented by the 10-ball one-stage lottery
˜lθ ∼ (x, pθ ; x, 1 − pθ ), where pθ = θ

10 is the objective probability given by the
ratio of the number of white balls θ ∈ {0, 1, . . . , 10} over 10. The second-order
probabilities on the possible compositions of the small urn depend upon the treatment
under consideration. In tasks 6–10 of treatments 1 and 2, the probability distribution
(q0, . . . , q10) over the one-stage lotteries is objective. It is binomial in treatment 1 and
uniform in treatment 2. Therefore, in treatment 1, given a task from 6 to 10, the second-
order objective probabilities are always less dispersed than in the corresponding task
in treatment 2.13

Since in our experiment second-stage lotteries assigned to a subject in tasks 5–9
have the same pair of outcomes, their variety only depends on first-order probabilities.
Notice that the simple lottery in task 5, l j4

4 , is analogous to a two-stage lottery with all

second-stage lotteries ˜lθ=5 being l j4
4 , namely L5 := (q1, l j4

4 ; q2, l j4
4 ; ..; qn, l j4

4 ). It is

trivially assumed that L5 ∼ l j4
4 . In order to identify whether a subject shows aversion,

neutrality, or proneness to ambiguity, the subject’s answers to tasks 5 and 6 can be
compared. In task 5, the subject is asked to value the unambiguous lottery that she has
selected in task 4. In task 6, the subject is asked to do the same for an ambiguous urn
with the same expected probability for the two outcomes. This suggests the following
operational Definition 1.

Definition 1 (value-ambiguity attitude) Call C E(Lt ) the subject’s reservation price
for the two-stage lottery assigned in task t ∈ {5, 6}. It can be interpreted as the certainty
equivalent of the two-stage lottery in task t . Then, a subject is value-ambiguity-averse
if C E(L6) ≤ C E(L5). She is value-ambiguity-neutral if C E(L6) = C E(L5). She is
value-ambiguity-loving if C E(L6) ≥ C E(L5).

In short, a value-ambiguity-averse subject values an ambiguous lottery less than its
unambiguous equivalent with the same mean probabilities. In the KMM model, this
is true if the subject’s φ function is concave.

Our experimental design offers an alternative to elicit ambiguity aversion by com-
paring the subject’s answers to tasks 4 and 10. The two possible outcomes in lotteries
{A, B, C, D} are the same in the two tasks. The difference lies in the fact that probabili-

13 In particular, in treatment 1, the objective second-order probabilities are as follows: in tasks 6 and
10, q10 = q0 = 1/1024 � 0.1 %, q9 = q1 = 10/1024 � 1 %, q8 = q2 = 45/1024 � 4.4 %,
q7 = q3 = 120/1024 � 11.7 %, q6 = q4 = 210/1024 � 20.5 %, and q5 = 252/1024 � 24.6 %;
in task 7, q7 = q3 = 1/16 = 6.25 %, q6 = q4 = 4/16 = 25 %, and q5 = 6/16 = 37.5 %; in
task 8, q10 = q3 = 1/128 � 0.8 %, q9 = q4 = 7/128 � 5.5 %, q8 = q5 = 21/128 � 16.4 %,
q7 = q6 = 35/128 � 27.3 %; in task 9, q7 = q0 = 1/128 � 0.8 %, q6 = q1 = 7/128 � 5.5 %,
q5 = q2 = 21/128 � 16.4 %, q4 = q3 = 35/128 � 27.3 %. All other qθ are zero. In treatment 2, the
objective second-order probabilities are: in tasks 6 and 10, qθ = 1/11 � 9.1 % for every θ = 0, 1, . . . , 10;
in task 7, qθ = 1/5 for every θ = 3, 4, . . . , 7; in task 8, qθ = 1/8 for every θ = 3, 4, . . . , 10; in task 9,
qθ = 1/8 for every θ = 0, 1, . . . , 7. All other qθ are zero.
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ties are unambiguously 1/2 in task 4, whereas they are ambiguous in task 10, with mean
1/2. Defining a dispersion order 	 on set {A, B, C, D}, such that D 	 C 	 B 	 A,
a more dispersed lottery is equivalent to a portfolio containing a larger share invested
in the risky asset.

Definition 2 (choice-ambiguity attitude) Call jt ∈ {A, B, C, D} the index of the
lottery chosen by a subject in task t ∈ {4, 10}. Then, a subject is choice-ambiguity-
averse if j10 
 j4, i.e., if lottery j10 is not more dispersed than lottery j4. She is
choice-ambiguity-neutral if j10 = j4. She is choice-ambiguity-loving if j10 � j4, i.e.,
lottery j10 is not less dispersed than j4.

Equivalently, a choice-ambiguity-averse subject will always reduce her demand
for the risky asset when the distribution of outcomes becomes ambiguous. In the
KMM smooth ambiguity aversion framework, Gollier (2012) has shown that it is
not true in general that the concavity of the φ function implies the subject’s choice-
ambiguity aversion. In other words, a smooth ambiguity-averse subject could have a
larger demand for the ambiguous asset than another ambiguity-neutral subject with
the same risk aversion. However, Gollier (2012) provides a set of sufficient condi-
tions on the structure of the two-stage uncertainty to re-establish the link between the
concavity of φ and ambiguity aversion. One of these sufficient conditions is that the
different second-stage distributions of the risky asset can be ordered by the Monotone
Likelihood Ratio stochastic order. Referring to the risky assets in Table 3, the set of

distributions of returns
{

(yt , pθ ; y
t
, 1 − pθ ) |θ = 0, . . . , 10

}

in our ambiguous tasks

can always be ordered by the Monotone Likelihood Ratio. Thus, we conclude that,
in the KMM framework, the two definitions of value-ambiguity aversion and choice-
ambiguity aversion are equivalent in our experimental setting and are satisfied if φ is
concave. This justifies the following definition.

Definition 3 (coherent-ambiguity attitude) A subject is coherently-ambiguity-averse
if CE(L6) ≤ CE(L5) and j10 
 j4, with at least one of the two relations holding
strictly. She is coherently-ambiguity-neutral if CE(L6) = CE(L5) and j10 = j4. She
is coherently-ambiguity-loving if CE(L6) ≥ CE(L5) and j10 � j4, with at least one
of the two inequalities holding strictly.

Our operational definition of coherent-ambiguity attitude is based on a double-
check: the subject’s behavior is compared in task 5 versus task 6 and in task 4 versus task
10. The first comparison shows whether, given the two second-stage lottery outcomes,
the subject prefers to know first-order probability pθ than facing a mean-preserving
spread of second-order probabilities over the all possible pθ . The second comparison
shows whether the subject prefers a less risky lottery (a less dispersed performance of
the portfolio in Table 3) where this mean-preserving spread takes place.

The analysis will now turn to analyze how the certainty equivalent of the two-
stage lottery varies when moving from task 6 to tasks 7, 8, or 9 and whether this
variation depends on the fact that the subject is ambiguity-averse. First CE(L7) will be
compared with CE(L6). It should be remembered that, in each of our three treatments,
the two-stage lottery in task 7 is obtained from task 6 by symmetrically eliminating
the plausibility of the extreme urns θ = 0, 1, 2, 8, 9, 10. This necessarily implies
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qθ = 0 in task 7 for these θ . Compared to task 6, the subject’s subjective second-
order probabilities must be symmetrically transferred from the extreme urns to the
less dispersed urns θ = 3, . . . , 7. This yields a mean-preserving contraction in the
distribution of ˜U ∼ (EU(˜l0), q0; . . . ; EU(˜l10), q10), as will be shown. In the remainder
of this section, u is normalized in such a way that u(x j4

4 ) = 0 and u(x j4
4 ) = 1, so that

EU (˜lθ ) = pθ .

Lemma 4 Consider a symmetric random variable p̃ ∼ (p0, q0; . . . ; pn, qn), with
pθ = θ/n, qθ = qn−θ for all θ , and n > 2. Consider another symmetric random
variable p̃′ ∼ (p0, q ′

0; . . . ; pn, q ′
n) on the same support, but with q ′

0 = q ′
n = 0

and q ′
θ = q ′

n−θ ≥ qθ = qn−θ for all θ ∈ {1, . . . , n − 1}. It implies that Eφ( p̃′) ≥
Eφ( p̃) for all concave functions φ, i.e., that p̃′ is a Rothschild-Stiglitz mean-preserving
contraction of p̃.

Proof Observe that, by symmetry,

E p̃ =
n

∑

θ=0

qθ

θ

n
=

n/2
∑

θ=0

qθ

(

θ

n
+ n − θ

n

)

=
n/2
∑

θ=0

qθ = 1

2
.

Because the same observation can be made for p̃′, E p̃ = E p̃′ = 1/2. Because p̃′ is
obtained from p̃ by a transfer of probability mass from the extreme states to the center
of the distribution, it is concluded that p̃ is a mean-preserving spread of p̃′. �

Repeating this lemma three times, it turns out that C E(L7) must be larger than
C E(L6) under smooth ambiguity aversion. Because L7 is still ambiguous, C E(L7)

is smaller than C E(L5). Thus, C E(L5) ≥ C E(L7) ≥ C E(L6). The opposite result
would hold under smooth ambiguity proneness. Observe that a crucial assumption for
the lemma is the symmetry of the second-order probability distributions. In treatments
1 and 2, the second-order probability distribution on the composition of the small urn is
either binomial or uniform: both are clearly symmetric. In treatment 3, the symmetry of
the second-order probability distribution will depend upon the subject’s beliefs on the
composition of the big urn from which the small urn is built. However, the principle of
insufficient reason suggests that the subject has symmetric beliefs on the composition
of the big urn, and, therefore, on the composition of the small urn generated by the
Bernoullian process. Under this principle, the following proposition can be written.

Proposition 5 If the subject is ambiguity-averse, then CE(L5) ≥ CE(L7) ≥ CE(L6).
If she is ambiguity-loving, then CE(L5) ≤ CE(L7) ≤ CE(L6). If she is ambiguity-
neutral, then CE(L5) = CE(L7) = CE(L6).

Tasks 8 and 9 will now be compared to task 6. Task 8 is similar to task 6 except that
the worst urns have been eliminated. Proposition 6 shows that the certainty equivalent
of the two-stage lottery assigned in task 8 is greater than the one of the two-stage lottery
assigned in task 6, whatever the degree of ambiguity of the subject, hence indepen-
dently of the fact that she is ambiguity-averse, neutral, or loving. The opposite result
prevails for task 9, in which the best urns have been removed. Therefore, comparison
among tasks 6, 8, and 9 always leads to C E(L8) ≥ C E(L6) ≥ C E(L9), whatever
the subject’s attitude toward ambiguity.
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Proposition 6 Suppose that new information implies that the worst (best) urns become
implausible, without reducing the probability qθ of any of the other urns. This new
information raises (reduces) the certainty equivalent of the two-stage lottery indepen-
dent of the degree of ambiguity aversion.

Proof Because φ is increasing and concave, it is obvious that any first-degree
or second-degree stochastic dominance improving shift in the distribution of
(q0, EU(˜l0); . . . ; qn, EU(˜ln)) raises the certainty equivalent of the two-stage lottery.
Because pθ = θ/n is increasing in θ, so is EU(˜lθ ) = pθu(x j4

4 ) + (1 − pθ )u(x j4
4 ).

Suppose that new information makes the worst lotteries (˜l0,˜l1, . . . ,˜lm), m < n,
totally implausible. This implies that the new second-order probabilities take the
form (q̂0, q̂1, . . . , q̂n), with q̂0 = q̂1 = · · · = q̂m = 0. This yields a first-degree
stochastic improvement if q̂i ≥ qi for all i ∈ {m + 1, . . . , n} . Therefore, under the
assumption that both u and φ are strictly monotone, this new information raises the
certainty equivalent of the lottery independent of the degree of ambiguity aversion. Of
course, the symmetric case also holds. Suppose that new information implies that the
best scenarios become implausible, without reducing the probability qθ of any of the
other scenarios. This new information reduces the certainty equivalent of the lottery
independent of the degree of ambiguity aversion. �

This result also applies to the comparison between task 8 (task 9) and task 7: the
certainty equivalent of the two-stage lottery assigned in the former task must be greater
(smaller) than the one of the two-stage lottery assigned in task 6, whatever the degree
of ambiguity of the subject. Task 7 may be seen as a modification of task 9 through new
information implying that the worst scenarios become implausible, without reducing
the probability qθ of any of the other scenarios in task 9. Task 7 may be also seen
as a modification of Task 8 through new information implying that the best scenarios
become implausible, without reducing the probability qθ of any of the other scenarios
in task 8. Therefore, it follows that CE(L8) ≥ CE(L7) ≥ CE(L9) independent of the
shape of φ.

An attempt will now be made to establish the complete ranking of the values of
tasks 5–9 under smooth ambiguity aversion. Earlier, it has been noted that smooth
ambiguity aversion implies that CE(L5) ≥ CE(L7) ≥ CE(L6). Combining these
three sequences of inequalities implies that, under smooth ambiguity aversion,

CE(L5)

CE(L8)

}

≥ CE(L7) ≥ CE(L6) ≥ CE(L9), (5)

independent of the subject’s attitude toward risk. The only degree of freedom under
smooth ambiguity aversion is thus given by the relative values of task 5 (no ambiguity:
q5 = 1) and task 8 (ambiguity with worst urns eliminated: q0 = q1 = q2 = 0). If
ambiguity aversion is small enough, i.e., the concavity of φ is small, then the large
expected probability of the high outcome enjoyed in task 8 will dominate the ambiguity
aversion effect to yield C E(L8) > C E(L5), otherwise C E(L8) ≤ C E(L5). The
following result is a direct consequence of Gollier (2001, Sect. 6.3.2).
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Proposition 7 Suppose that a subject prefers the unambiguous lottery L5 to the
ambiguous lottery L8 (this is possible only under ambiguity aversion). Then, an
increase in ambiguity aversion in the KMM model can never reverse this ranking.

This implies that, assuming similar attitudes toward risk, any subject with CE(L5) <

CE(L8) has a smaller degree of smooth ambiguity aversion than any subject with
CE(L5) ≥ CE(L8). Thus, comparing the values of task 5 and 8 for an ambiguity-
averse subject will provide information about her degree of ambiguity aversion.

Of course, in the limit case of smooth ambiguity-neutrality,

CE(L8) > CE(L5) = CE(L6) = CE(L7) > CE(L9), (6)

independent of the subject’s attitude toward risk. Finally, for an ambiguity-loving
subject,

CE(L8) ≥ CE(L6) ≥ CE(L7) ≥
{

CE(L5)

CE(L9)
, (7)

independent of her attitude toward risk. If the degree of ambiguity proneness is small
enough, i.e., the convexity of φ is small, then the low expected probability of the high
outcome faced in task 9 will dominate the attractiveness of this ambiguous lottery for
ambiguity-loving subjects, so that CE(L9) < CE(L5), otherwise CE(L9) ≥ CE(L5).

Proposition 8 Suppose that a subject prefers the unambiguous lottery L5 to the
ambiguous lottery L9 (this is possible also under ambiguity proneness). Then, a con-
cave transformation of theφ function in the KMM model can never reverse this ranking.

Thus, comparing the values of task 5 and 9 for an ambiguity-loving subject will
provide information about her degree of ambiguity proneness.

The next corollary shows the difference among certainty equivalents of two-stage
lotteries in the same task of different treatments. The comparison of treatments 1 and 2
is the easiest. The uniform distribution of the second-order probabilities in treatment 2
is clearly a mean-preserving spread of the binomial distribution obtained in treatment
1. Comparing the certainty equivalents for treatments 1 and 3 is more difficult. In both
treatments, a Bernoullian process is applied to build the small urn, but the parameter of
the Bernoulli distribution is p = 1/2 in treatment 1, whereas it is unknown in treatment
3. If one accepts the principle of insufficient reason, then it may be assumed that the
third-order probabilities on parameter p yields Ep = 1/2. Under this assumption,
treatment 3 always yields a mean-preserving spread of the second-order probability
distribution (q0, . . . , qn). Under ambiguity aversion, this yields a reduction of the
certainty equivalents. This yields the following result.

Corollary 9 If the subject is ambiguity-averse (-loving), then C Et is greater (smaller)
in treatment 1 than in treatments 2 and 3 for every t = 6, 7, 8, 9.

By combining Proposition 7, Proposition 8, and Corollary 9, specific behavioral
predictions about possible treatment differences can be made. Although our experi-
mental design is not within-subject, Tables 4 and 5 show that the distribution of the
degree of risk aversion does not differ among the three treatments, if both a CARA and a
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CRRA specification are used. Hence, if we assume that the distribution of the degree of
ambiguity aversion is the same among the three treatments, then for similar degrees of
risk aversion it should be found that the percentage of ambiguity-averse subjects with
C E(L5) ≥ C E(L8) is lower in treatment 1 than in treatments 2 and 3. By combining
Proposition 8 and Corollary 9 for ambiguity-loving subjects, a symmetrical prediction
arises. Assume that the distribution of the degree of ambiguity proneness is the same
among the three treatments. Then, the percentage of ambiguity-loving subjects with
C E(L9) ≥ C E(L5) should be lower in treatment 1 than in treatments 2 and 3 within
the same class of risk aversion.

4 Experimental results

In this section, our experimental results will be presented.14 First, in Sect. 4.1, the
results of the elicitation of the subjects’ risk attitude through the portfolio choice
method implemented in (unambiguous) tasks 1–4 are analyzed. Then, in Sect. 4.2,
subjects will be classified according to their ambiguity attitude relying on the oper-
ational definition introduced in Sect. 3. In Sect. 4.3, the main theoretical predictions
derived in Sect. 3 will be tested. In Sect. 4.4, there will be an analysis of the treatment
effects on the distribution of subjects’ beliefs over second-order probabilities and on
the certainty equivalents of two-stage lotteries in the ambiguous tasks.

4.1 Risk attitude elicitation

The portfolio choice method used at the beginning of the experiment enables all
subjects to face the same set of lotteries in tasks 1–4. This prompts a risk-attitude
ordering of subjects independent of l j4

4 , the lottery chosen in task 4. This is the first
reason why such ordering is preferred to the certainty equivalent elicited in task 5,
which instead depends on l j4

4 . Further, this specific portfolio choice method has the
advantage of imposing some theoretically derived constraints which allow to check
whether the subject’s selected pattern is compatible with a CARA and/or a CRRA
specification. This provides an empirical verification of what is generally assumed in
many experimental studies on risk aversion.

First, a check is made on whether the portfolio choice method elicitation (tasks 1–4)
leads to the same ordering in terms of CE(L5) as the (more standard) BDM mechanism
proposed in task 5. Indeed, a positive (coeff. = 0.46) and highly significant (P value
= 0.000) correlation is found between CE(L5) as predicted by the CARA ordering
derived from the selected pattern in tasks 1–4 (see Table 4) and the one elicited through
the BDM mechanism in task 5. If the CRRA is used in place of the CARA ordering (see
Table 5), the former correlation is slightly lower (coeff. = 0.36) and again statistically
significant (P value = 0.006).15

14 All raw data and statistical codes are available on request.
15 More precisely, CE(L5) predicted by the CARA ordering is calculated as the average between

CE(l
j4
4 ; AR Ah) and CE(l

j4
4 ; AR Ah) in (1), for h = 1, 2, . . . , 9. Similarly, CE(L5) predicted by the CRRA

ordering is calculated as the average between CE(l
j4
4 ; RRAk ) and CE(l

j4
4 ; RRAk ) in (2), for k = 1, 2, . . . , 12.
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Second, significant differences among the three treatments in the distribution of
CARA indexes or in the distribution of CRRA indexes are checked for. Although the
percentage of explained patterns under each specification is different in the Uniform
treatment (see respectively Tables 4, 5), no significant difference in the distribution of
risk-aversion ordering in the three treatments is found. This is what Fig. 8 in the Appen-
dix seems to suggest, if both a CARA and a CRRA specification are used. To provide
support to the graphical representation, two non-parametric tests have been conducted:
a Kruskal–Wallis test16 and a Kolmogorov-Smirnov equality-of-distributions test with
a pairwise comparison between treatments17. Both tests confirm no significant differ-
ence in the distribution of both the CARA and the CRRA ordering among the three
treatments.18

Therefore, both orderings are correlated with the certainty equivalent of task 5
and lead to similar distributions of risk attitude among treatments. Without assuming
whether subjects are CARA or CRRA, both specifications are used when analyzing
possible relations between the subject’s degree of risk aversion and her behavior in
tasks 6–10.

It is true that all the theoretical predictions derived in Sect. 3 within the KMM
framework should hold whatever the subject’s risk aversion. Nevertheless possible
correlations between risk attitude and ambiguity attitude are checked for. A further
check is made about a possible role of risk attitude when testing our main theoretical
predictions, which have been shown to hold independently of the subject’s risk attitude.
Finally, including risk aversion as an explanatory variable in the econometric analysis
may be useful in order to provide an experimental answer to some open theoretical
questions such as the sign of CE(L8) − CE(L5) for ambiguity-averse subjects or the
sign of CE(L9)−CE(L5) for ambiguity-loving ones. Notice that, for ambiguity-neutral
subjects, it is always CE(L8) > CE(L5) and CE(L9) < CE(L5).

4.2 Ambiguity attitude elicitation

In Table 6, subjects are classified as being ambiguity-averse, ambiguity-neutral, and
ambiguity-loving in each treatment according to Definition 3 (coherent-ambiguity
attitude).19

16 The Kruskal–Wallis equality-of-populations rank test verifies the hypothesis that several samples are
from the same population.
17 The Kolmogorov-Smirnov test compares two observed distributions f (·) and g(·). The procedure
involves forming the cumulative frequency distributions F(·) and G(·) and finding the size of the largest dif-
ference between these. The hypothesis tested is whether the two observed distributions are equal (pairwise
comparisons between treatments 1–2, treatments 1–3, and treatments 2-3).
18 According to the Kruskal–Wallis test the null hypothesis of equality of distributions (P value = 0.401
for CARA and P value = 0.357 for CRRA) cannot be rejected. The Kolmogorov-Smirnov test confirms this
result.
19 EU maximizing subjects for the Binomial and Uniform treatments and subjective expected utility (hence-
forth, SEU) maximizing subjects for the Unknown are both value-ambiguity-neutral and choice-ambiguity-
neutral, hence coherent-ambiguity-neutral. However, given that the choice set in all our experimental tasks
is discrete, it cannot be excluded that weekly non-EU (and non-SEU) maximizing subjects may fall into the
group of coherent-ambiguity-neutral subjects. For example, consider a non-EU maximizing subject with
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Table 6 Classification of
(coherent-)ambiguity attitude
according to Definition 3

Binomial Uniform Unknown Total

Coherent averse 13 15 17 45

Coherent neutral 16 5 8 29

Coherent loving 5 9 4 18

Total classified 34 29 29 92

Value averse & Choice
loving

1 4 2 7

Value loving & Choice
averse

0 2 4 6

Total unclassified 1 6 6 13

Almost 1/2 of the classified subjects are ambiguity-averse, while less than 1/5 are
ambiguity-loving. Only 13 subjects (less than 12 % of the sample) participating in our
experiment cannot be classified according to Definition 3: around half of them are
ambiguity-averse according to Definition 1 (value-ambiguity attitude) and ambiguity-
loving according to Definition 2 (choice-ambiguity attitude). The other half of them are
value-ambiguity-loving and choice-ambiguity-averse.20 Given the small percentage
of unclassified subjects, it can be concluded that the concavity of the φ function
implies choice-ambiguity aversion in our experimental tasks. This was exactly our
theoretical prediction, given that the different second-stage distributions of the risky
asset have been set such that they can be ordered according to the Monotone Likelihood
Ratio stochastic order (see Gollier 2012). Indeed, the correlation between strong value-
ambiguity aversion (CE(L6) < CE(L5)) and strong choice-ambiguity aversion ( j10 ≺
j4) is positive, not very high (coeff. = 0.18), but statistically significant (P value
= 0.074). This last result will be further analyzed at the end of Sect. 4.3, by showing
that in our sample subjects with strong choice-ambiguity aversion are usually non-
strongly value-ambiguity-averse.

From Table 6, one can also see that the percentage of classified subjects being
ambiguity-averse is lower in the Binomial than in the Uniform treatment and in the
Unknown treatment. Further, the percentage of classified subjects being ambiguity-
neutral is higher in the Binomial than in the other two treatments.

Additional results can be stated by considering the “sign” of the ambiguity attitude.
This is defined as being negative if the subject is ambiguity-averse, null if she is
ambiguity-neutral, and positive if she is ambiguity-loving. Looking at the multinomial
logistic regression of the sign of the ambiguity attitude over the treatment, it is found
that the relative risk ratio for being ambiguity-neutral versus being ambiguity-averse is
0.27 (P value = 0.040) when switching from the Binomial to the Uniform treatment
and 0.38 (P value = 0.091) when switching from the Binomial to the Unknown

Footnote 19 continued
a strictly concave φ function, hence being ambiguity-averse. If the concavity of her φ function is small,
then in our discrete choice set she could make the same choice as another subject with a linear φ function,
hence ending up being classified as coherent-ambiguity-neutral.
20 Although the number of unclassified subjects is lower in the Binomial than in the other two treatments,
unclassified subjects are not statistically different from classified ones both with respect to CARA or CRRA
ordering and with respect to the lottery chosen in task 4.
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treatment. In other words, the expected probability of being ambiguity-neutral seems to
be higher for subjects who participate in the Binomial treatment. Table 6 also shows that
the percentage of subjects being ambiguity-loving is lower in the Binomial than in the
Uniform treatment, but not in the Unknown treatment. However, a multinomial logistic
regression of the ambiguity attitude over the treatment shows that the relative risk ratio
for being ambiguity-loving versus being ambiguity-averse is 1.56 (not statistically
significant: P value = 0.510) when switching from the Binomial to the Uniform
treatment and 0.62 (not statistically significant: P value = 0.521) when switching
from the Binomial to the Unknown treatment.21

A possible explanation of this result relies on Corollary 9. Given the degree of
ambiguity attitude, |CE(L6) − CE(L5)| is lower in the Binomial than in the Uniform
treatment. This is due to the fact that the distribution of second-order probabilities is
less dispersed in the Binomial than in the Uniform treatment. Moreover, recall that
the set of possible certainty equivalent values that a subject may select is discrete.
Therefore, if a subject is slightly-ambiguity-averse or slightly-ambiguity-loving, it is
more likely for her to choose CE(L6) = CE(L5) in the Binomial than in the Uniform
treatment.22 The intuition based on Corollary 9 applies also to the comparison between
the Binomial and the Unknown treatment. Indeed, the percentage of ambiguity-averse
(loving) subjects in the Unknown treatment is higher (lower) with respect to the other
two treatments, although this difference is not significant (Kruskal–Wallis, P value
= 0.258). However, by making a pairwise comparison between treatments about the
percentage of ambiguity-averse subjects, it is found that there is no statistically sig-
nificant difference between the Binomial and the Uniform treatment (t test, P value
= 0.290)23 and between the Uniform and the Unknown treatment (P value = 0.605),
while the difference between the Binomial and the Unknown treatment is almost signif-
icant (P value = 0.109). This distortion confirms our intuition about the interpretation
of the Unknown treatment. In the Binomial and in the Unknown treatment, the 10-
ball small urn in task 6 has been generated through the same Bernoullian process.
However, the latter treatment is intrinsically more ambiguous, given that there is no
information about the composition of the big urn from which the small unknown urn
is generated. According to KMM, this generates smaller CE(L6) through (4) and/or
lower j10 through (3) in the Unknown than in the Binomial treatment, thereby signif-
icantly increasing the percentage of subjects for which it is CE(L6) ≤ CE(L5) and
j10 
 j4. Notice that if value-ambiguity aversion and choice-ambiguity aversion are
disentangled, a higher percentage of ambiguity-averse subjects in the Unknown treat-
ment is found than in the Binomial treatment, although this difference is not statistically
significant.

21 These results are not shown but can be made available upon request.
22 This intuition is reinforced by the fact that the correlation between (strong) value-ambiguity-aversion
and (strong) choice-ambiguity-aversion found above in all the sample of classified subjects is higher (coeff.
= 0.45) and significant (P value = 0.007) only if the analysis is restricted at the Binomial treatment. In
this treatment, it is plausible that only highly-ambiguity-averse subjects show at the same time CE(L6) <

CE(L5) and j10 ≺ j4.
23 The t test is any statistical hypothesis test (parametric) in which the test statistic follows a Student’s t
distribution if the null hypothesis is supported. Here, a two-sample t test is run for a difference in mean (the
null hypothesis is that the two samples have the same mean).
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Fig. 2 Risk-attitude orderings in tasks 1–4 and lottery chosen in task 4 by ambiguity attitude

This section will be concluded by analyzing the relation between the sign of the
ambiguity attitude and the degree of risk aversion. Figure 2a shows—through his-
tograms and kernel density plots—that both the distribution of CARA indexes and the
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distribution of CRRA indexes differ according to the sign of the ambiguity attitude.
Indeed, under both specifications, the modal risk-aversion index for ambiguity-averse
and for ambiguity-neutral is 1 (non-risk-averse subjects), while the modal index for
ambiguity-loving subjects is 8 (risk-averse subjects). Differences in the distributions
of our risk-aversion ordering among different signs of the ambiguity attitude are indeed
found to be significant.24 This supposed negative correlation between the sign of the
ambiguity attitude and the index of risk aversion is confirmed by rank correlation tests
for ambiguity-neutral subjects under CARA (coeff. = −0.28, P value = 0.063) and for
ambiguity-loving subjects under both specifications (under CARA: coeff. = −0.39,
P value = 0.007; under CRRA, coeff. = −0.30, P value = 0.013). Such negative
correlation is not found to be significant for ambiguity-averse subjects. However, if
ambiguity-averse subjects are disentangled according to Definition 1 and Definition 2,
the negative correlation between the fact of being choice-ambiguity-averse and the
index of risk aversion is found to be significant (under CARA: coeff. = −0.30, P value
= 0.029; under CRRA: coeff. = −0.31, P value = 0.007). This last result is even more
relevant if one recalls that choice-ambiguity aversion was elicited (tasks 4 and 10) by
relying on the same method used to elicit risk aversion (tasks 1–4). Figure 2b seems to
confirm our intuition: very few ambiguity-averse subjects (less than 5 %) choose the
least risky lottery in task 4, while the vast majority of ambiguity-loving ones (61 %)
choose this lottery in task 4; moreover, none of the latter chooses the riskiest lottery in
task 4. Differences in the distribution of l j4

4 among the three groups of subjects averse,
neutral, and prone to ambiguity are found to be significant.25

This point can be further clarified by bringing into the analysis the subject’s guess
on the number of balls linked to the highest of the two lottery outcomes (henceforth,
“winning balls”) in task 6, that could be interpreted as the subject’s modal belief on the
composition of the small unknown urn. This guess may have influenced the certainty
equivalent in task 6 and so the sign of value-ambiguity aversion.26 Figure 9 in the
Appendix reports the distribution of subjects’ guess on the number of winning balls
in tasks 6–9 disentangled by the sign of their ambiguity attitude (averse, neutral, and
loving).27 By looking at the upper-left part of Fig. 9, one can notice that also the

24 In order to verify the equality in the distribution of each risk-aversion index among different signs of
the ambiguity attitude, two different tests have been performed: Kruskal–Wallis equality-of-populations
rank test and Kolmogorov-Smirnov equality-of-distributions test. Both under CARA and under CRRA,
the null hypothesis of equality in distributions can be rejected according to the Kruskal–Wallis equality-of-
populations rank test (respectively for CARA and CRRA: P value = 0.010 , P value = 0.010). By performing
the Kolmogorov-Smirnov equality-of-distributions test with a pairwise comparison between different signs
of the ambiguity attitude, the results are found to be consistent with the Kruskal–Wallis test.
25 Again, a Kruskal–Wallis test has been performed to check whether the distribution of l

j4
4 is different

by treatment. According to this test, the null hypothesis of equality in distribution (P value = 0.000) can
be rejected. A Kolmogorov-Smirnov test has also been performed with a pairwise comparison between
different signs of the ambiguity attitude, and the results are consistent with the Kruskal–Wallis test.
26 The guess in task 6 is positively correlated (coeff. = 0.20, P value = 0.045) with the “normalized”
CE(L6). In Sect. 4.4, the specific meaning of “normalized” certainty equivalent is explained.
27 Recall that each unknown small urn in tasks 6–9 has 10 balls inside. Hence, the set of possible guesses
in each of these tasks is {0, 1, . . . , 10}.

123



G. Attanasi et al.

distribution of subjects’ guess in task 6 is significantly different among different signs
of the ambiguity attitude.28

Indeed, with a multivariate regression analysis it is found that—controlling or not for
treatment effect—both l j4

4 and the guess in task 6 are highly significant (respectively,
P value = 0.000 and P value = 0.001): the former has a positive effect on being
ambiguity-averse, while the latter has a negative one.

About the positive effect of l j4
4 , it may be thought that subjects have made some

kind of hedging between the higher risk they accepted through the choice of a risky
lottery in task 4 and the ambiguous second-order probabilities over this (second-stage)
lottery in task 10. Indeed, if value-ambiguity aversion and choice-ambiguity aversion
are disentangled, a positive and highly significant correlation is found between l j4

4 and
each measure of ambiguity attitude: respectively, coeff. = 0.24 (P value = 0.023) for
value-ambiguity aversion and coeff. = 0.42 (P value = 0.000) for choice-ambiguity
aversion.

About the negative effect of the guess of the number of winning balls in task
6, this plays a role through a decrease of CE(L6) and j10. Section 4.4 will show
that the distribution of subjects’ guess in task 6 does not depend on the treatment
where the subjects have participated, i.e., on the different distributions of second-
order probabilities that have been generated through our experimental design.

4.3 Test of the main theoretical predictions

This section reports and comments on the percentage of classified subjects who satisfy
the theoretical predictions stated in Sect. 3. Classified subjects are disentangled accord-
ing to the sign of their ambiguity attitude (averse, neutral, and loving) and according
to the treatment where they participated. All the theoretical predictions tested in this
section should hold independent of the treatment. A first set of theoretical predictions
(Proposition 5) state different conditions for ambiguity-averse, ambiguity-neutral, and
ambiguity-loving subjects. A second set of theoretical predictions (Proposition 6)
should hold whatever the sign of the ambiguity attitude.

Figure 3 summarizes the percentage of subjects classified according to Definition 3
whose behavior in tasks 5–7 complies with Proposition 5. In particular, for 78 %
(35/45) of ambiguity-averse subjects CE(L5) ≥ CE(L7) ≥ CE(L6); for 86 % (25/29)
of ambiguity-neutral subjects CE(L5) = CE(L7) = CE(L6); for 78 % (14/18) of
ambiguity-loving subjects CE(L5) ≤ CE(L7) ≤ CE(L6). Although the percentage of
subjects fulfilling predictions of Proposition 5 is higher among the ambiguity-neutral
ones, the validity of said predictions does not depend on the sign of the ambiguity
attitude. On the other hand, there is a weak dependence on the treatment. Through
a t test, it is found that the percentage of subjects complying with Proposition 5 is
almost significantly higher in the Binomial (P value = 0.124) and in the Unknown

28 Through the Kruskal–Wallis test, we can reject the null hypothesis of equality in distribution (P value
= 0.000). The Kolmogorov-Smirnov test confirms this result.
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Fig. 3 Percentage of subjects satisfying Proposition 5, by treatment and ambiguity attitude

(P value = 0.120) than in the Uniform treatment. Finally, this compliance is uncorre-
lated with the subject’s CARA or CRRA ordering, as predicted by Proposition 5.29

Figure 4 reports the percentage of subjects whose behavior in tasks 6–9 complies
with Proposition 6 with regard to CE(L6) (Fig. 4a) and with regard to CE(L7) (Fig. 4b),
respectively. Recall that Proposition 6 provides the same prediction for all subjects
being classified according to Definition 3, whatever the sign of their ambiguity attitude
and their degree of ambiguity aversion. It is easy to notice that the percentage of
subjects fulfilling Proposition 6 is even higher than for Proposition 5 and that it does
not depend on which of the two reference certainty equivalents have been applied,
CE(L6) or CE(L7). In both cases, more than 90 % of ambiguity-averse subjects (42/45
for CE(L6), 41/45 for CE(L7)), all ambiguity-neutral subjects (29/29), and more than
70 % of ambiguity-loving subjects (13/18) comply with Proposition 6. As further proof
of “rational” behavior of this huge percentage of subjects, it should be noted that there
are only 4/84 subjects satisfying Proposition 6 with regard to CE(L6) and not satisfying
it with regard to C E(L7); there are only 3/83 subjects who fulfill the predictions with
regard to CE(L7) and not with regard to CE(L6).

There are no significant differences by treatment if CE(L6) is taken as reference. If
instead CE(L7) is taken as reference, the percentage of subjects being consistent with
Proposition 6 is slightly higher in the Binomial than in the Uniform treatment, with
such difference being significant (P value = 0.055). On the other hand, whatever the
reference certainty equivalent, CE(L6) or CE(L7), a significant difference is found by
the sign of the ambiguity attitude. Indeed, the percentage of ambiguity-loving subjects
complying with Proposition 6 is significantly lower than the percentage of ambiguity-
averse ones30 and the percentage of ambiguity-neutral ones31. Again, compliance
with the prediction of Proposition 6 is uncorrelated with the subject’s CARA or CRRA
ordering, in line with the theory.32

29 P value = 0.546 for CARA, P value = 0.841 for CRRA.
30 P value = 0.023 for CE(L6), P value = 0.054 for CE(L7).
31 P value = 0.002 for both CE(L6) and CE(L7).
32 If CE(L6) is taken as reference, P value = 0.202 for CARA, P value = 0.278 for CRRA. If CE(L7) is
taken as reference, P value = 0.216 for CARA, P value = 0.333 for CRRA.
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Fig. 4 Percentage of subjects satisfying Proposition 6, by treatment and ambiguity attitude

Figure 5 shows the percentage of classified subjects whose behavior in tasks 5–9
satisfies both Proposition 5 and Proposition 6 at the same time. As seen in Sect. 3, the
two propositions taken together lead to relation (5) for ambiguity-averse, relation (6)
for ambiguity-neutral, and relation (7) for ambiguity-loving subjects. Indeed, more
than 75 % of classified subjects (70/92) state their certainty equivalents in tasks 5–9 in
a way that all the “rationality” constraints imposed by the KMM model are satisfied.
It is interesting that between Proposition 5 and Proposition 6 the former cuts much
more observations, given that percentages of verification in Fig. 5 are only slightly
lower than those in Fig. 3. In addition, ambiguity-loving subjects have a lower ratio of
fulfillment of Propositions 5 and 6 taken together (61 %, 11/18) than ambiguity-averse
subjects (76 %, 34/45) and ambiguity-neutral ones (86 %, 25/29), although the former
difference is not significant, possibly due to the low number of ambiguity-loving
subjects in our sample. It should also be noted that all ambiguity-neutral subjects
fulfilling Proposition 5 also fulfill Proposition 6.

Furthermore, significant differences both by the sign of the ambiguity attitude and
by treatment are encountered. About the former, we have anticipated above that the
percentage of ambiguity-loving subjects complying with both propositions is found
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Fig. 5 Percentage of subjects satisfying (5), (6), and (7), by treatment and ambiguity attitude.
[Note Relations (5), (6) and (7) refer respectively to ambiguity-averse, ambiguity-neutral and ambiguity-
loving subjects]

Fig. 6 Disentanglement of low,
medium, and high ambiguity
aversion w.r.t.
CE(L8) � CE(L5) and
proneness w.r.t.
CE(L5) � CE(L9)

to be significantly lower than the percentage of ambiguity-neutral ones (P value =
0.038). About the latter, the percentage of subjects complying with both propositions
is significantly higher in the Binomial (P value = 0.038) and in the Unknown (P value
= 0.018) than in the Uniform treatment. It is particularly striking that in the Unknown
treatment, all subjects satisfying Proposition 5 satisfy also Proposition 6, both with
regard to CE(L6) and with regard to CE(L7). In fact, percentages of compliance with
the theoretical predictions are the same in Figs. 3 and in 5, whatever the sign of
the ambiguity attitude. Once more, compliance with the entire set of our theoretical
predictions is uncorrelated with the subject’s CARA or CRRA index.33

Finally, the subject’s behavior will be analyzed in the only two tasks for which
no sharp theoretical prediction is available. Reference here is made to tasks 5 and 8
for ambiguity-averse subjects and to tasks 5 and 9 for ambiguity-loving ones. From
relation (6), in the limit case of smooth ambiguity-neutrality, CE(L8) > CE(L5) and
CE(L5) > CE(L9) must hold. Therefore, in Fig. 6, ambiguity attitude is classified as
“Low” for those ambiguity-averse subjects and for those ambiguity-loving ones who
behave like the ambiguity-neutral ones, respectively, in tasks 5 and 8 and in tasks 5
and 9. “Medium” and “High” ambiguity attitudes are classified accordingly, that is a

33 P value = 0.838 for CARA, P value = 0.765 for CRRA.
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subject is highly-ambiguity-averse if CE(L8) < CE(L5) and highly-ambiguity-loving
if CE(L5) < CE(L9).

Surprisingly enough, the same percentage of highly-ambiguity-averse (10/45) and
of highly-ambiguity-loving (4/18) subjects is found in our sample. Subjects in the
former group prefer to know the composition of the small urn with certainty (task 5)
rather than knowing only that the worst scenarios are implausible (task 8). Specularly,
subjects in the latter group prefer to know only that the best scenarios are implausible
(task 9) rather than knowing the composition of the small urn with certainty (task 5).
Notice that neither the sign of CE(L8) − CE(L5) for ambiguity-averse subjects nor
the sign of CE(L5) − CE(L9) for ambiguity-loving ones is correlated with any of the
explanatory variables introduced above (treatment, CARA ordering, CRRA ordering,
lottery chosen in task 4, and guess on the winning balls, respectively, in task 8 and in
task 9). The effects of all these variables are not significant at all, both in the univariate
analysis considering each control singularly and in the multivariate regressions. The
only significant result detected is indeed counterintuitive. It is found that CE(L8) −
CE(L5) > 0 depends positively on strong choice-ambiguity aversion (i.e., j10 ≺ j4).
This would lead to conclude that strongly-choice-ambiguity-averse subjects are not
so strongly-value-ambiguity-averse (CE(L6) < CE(L5)), thereby explaining why the
above found correlation between strong choice-ambiguity-attitude and strong value-
ambiguity-attitude, although positive and significant, is not so high.

As anticipated at the end of Sect. 3, the combination of Proposition 7 and Corol-
lary 9 suggests a possible treatment effect on the percentage of ambiguity-averse sub-
jects showing CE(L5) ≥ CE(L8) and on the percentage of ambiguity-loving subjects
showing CE(L9) ≥ CE(L5). Such prediction relies on the assumption of a similar
distribution of risk attitude among the three treatments, which is satisfied, as shown
in Sect. 4.1. Indeed, the prediction on the treatment effect over the size of the ambi-
guity attitude is verified. The percentage of medium- and highly-ambiguity-averse
subjects is lower in the Binomial (31 %, 4/13) than in the Uniform (60 %, 9/15) and
in the Unknown treatment (47 %, 8/17), with the difference being almost significant
between the Binomial and the Uniform (P value = 0.131). Specularly, the percentage
of medium- and highly-ambiguity-loving subjects is lower in the Binomial (40 %, 2/5)
than in the Uniform (67 %, 6/9) and in the Unknown treatment (50 %, 2/4).

4.4 Treatment effects over beliefs and certainty equivalents

The analysis of the experimental results can be concluded by looking at possible
treatment effects over the certainty equivalent and over the guess of winning balls in
tasks 6–9.

Corollary 9 states that CE(Lt ) for t = 6, . . . , 9 should be higher in the Binomial
than in the Uniform and in the Unknown treatment. If the subject’s guess on winning
balls in task t is correlated with CE(Lt ) for t = 6, . . . , 9, then it should be found that
this guess should also be higher in the Binomial treatment. Now, it is true that our
experimental design is between-subject; hence, it cannot be directly stated whether
and how a subject changes her certainty equivalent (and her guess) according to the
way in which the unknown small urn is generated at the beginning of task 6. However,
under the assumption that both the distribution of risk attitudes and the distribution
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of ambiguity attitudes are not too different among treatments—that is what has been
shown, respectively, in Sect. 4.1 and in Sect. 4.2—possible treatment differences in
the distribution of certainty equivalents and of guesses in tasks 6–9 can be analyzed.

Figure 7 reports the distribution of subjects’ guess on the number of winning balls
in tasks 6–9 disentangled by treatment. The graphs by treatment seem to suggest that
the distribution of guesses in the Unknown treatment is close to the one in the Binomial
treatment, and both are quite different from the one in the Uniform treatment. This
result is in line with the principle of insufficient reason, that should lead a subject in
the Binomial and in the Unknown treatment to provide a guess equal to 5 winning
balls in tasks 6 and 7, between 6 and 7 winning balls in task 8, and between 3 and 4
winning balls in task 9. Conversely, in the Uniform treatment, all guesses should be
equivalent: any guess over a scenario that is plausible in a specific task is justifiable.

However, it is found that the distribution of a subject’s guess in task t is not signifi-
cantly different among treatments, for t = 6, 8, 9.34 Our intuition is instead correct in
task 7. According to the Kruskal–Wallis test on the equality in distribution of guesses by
treatment, the null hypothesis can be rejected at a 10 % level (P value = 0.082). More
precisely, according to the Kolmogorov-Smirnov equality-of-distributions test, there
is not equality in the distribution of guesses between the Binomial and the Uniform
treatment (P value = 0.003) and between the Unknown and the Uniform treatment (P
value = 0.016). Also in this specific task, it seems that the subjects in the Unknown
treatment state similar guesses to those of the subjects in the Binomial one.

Focusing on the relation between certainty equivalents and subjects’ guesses, over-
all, the former are never found to be correlated with the latter in tasks 6–9 within the
same task.35

In general, certainty equivalents in task t (CE(Lt )) are negatively correlated with
the CARA and/or with the CRRA ordering (recall that the ordering index increases with
risk aversion). This is reasonable: as shown above, the subject’s certainty equivalent
elicited in task 5 (and in the following four tasks) relies on the lottery chosen in task
4. This choice also depends on the CARA or the CRRA ordering elicited in tasks 1–4
(as seen in Sect. 4.2, this choice also influences the sign of the ambiguity attitude).

The link between certainty equivalent and risk aversion is further investigated by
considering the lottery chosen in task 4 (l j4

4 ) and its relation with the “normalized”

values of the certainty equivalents, i.e., their index in tasks 6–9, with CE(Lt ) = x j4
4

being assigned index 1 and CE(Lt ) = x j4
4 being assigned index 11.36 Figure 10

in the Appendix shows the “normalized” values of CE(Lt ) for t = 6, . . . , 9. Once
CE(Lt ) are normalized, they are still found to be correlated with the risk-attitude index.

34 According to the Kruskal–Wallis test on the equality in distribution of guesses by treatment, the null
hypothesis cannot be rejected (respectively, for task 6, 8, 9, P value: 0.739, 0.375, 0.175). The Kolmogorov-
Smirnov equality-of-distributions test with a pairwise comparison between treatments confirms this result.
35 However, CE(L6) is positively correlated (coeff. = 0.35) with the guess in task 6 only in the Uniform
treatment (P value = 0.037). Also, CE(L9) is positively correlated (coeff. = 0.36) with the guess in task 9
only in the Binomial treatment (P value = 0.035).
36 In tasks 5–9, each subject always has the possibility to choose among eleven possible selling prices.

Therefore, for every t = 5, 6, . . . , 9 , index 1 can always be assigned to CE(Lt ) = x
j4
4 , index 11 to

CE(Lt ) = x
j4
4 and internal CE(Lt ) can be indexed accordingly. See footnote 5.
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Fig. 7 Distribution of subjects’ guess on the number of “winning balls” in tasks 6–9 by treatment

However, while the relation between risk aversion and CE(L6), CE(L7) and CE(L8)

is negative, CE(L9) instead shows a positive relation with risk aversion. The last
result can be referred to the positive correlation between risk aversion and ambiguity
proneness highlighted in Sect. 4.2. Further, as long as the distribution of the second-
order probabilities is symmetric around θ = 5 (tasks 6 and 7), the normalized certainty
equivalents are correlated with the guesses in the same task. Such correlation is not
found in tasks 8 and 9.

A strong regularity is that, by regressing either CE(Lt )or its normalized version over
the guess in the same task, the index of risk attitude and the treatment, no significant
treatment effects are found for any t = 6, 7, 8, 9.37 As one can notice from Fig. 10,
the differences among treatments in the distribution of normalized CE(Lt ) are not
statistically significant for every t = 6, . . . , 9. In addition, the sign of all differences
CE(Lt+1) − CE(Lt ) for t = 5, 6, 7 and CE(Lt+2) − CE(Lt ) for t = 6, 7 do not
depend on the treatment.38

37 A relevant exception is again represented by the (normalized) certainty equivalent in task 7. Controlling
for CARA and treatment and taking the Binomial as reference treatment, the Unknown treatment has a
positive and significant effect (P value = 0.059) over CE(L7). Controlling for CRRA and treatment, the
Uniform treatment also has a positive and significant effect (P value = 0.041) over CE(L7).
38 To be more precise, only in the regressions for CE(L7) − CE(L6) > 0 (CE normalized), the Uniform
treatment significantly increases the probability that CE(L7) − CE(L6) > 0 with respect to the Binomial
treatment (P value = 0.040). This result also holds when controlling for the difference in the guesses about
the number of winning balls in task 7 and task 6.
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All these findings lead to the following conclusion. Despite some differences in the
distribution of guesses among treatments, no treatment effect is found on the distrib-
ution of certainty equivalents in the ambiguous tasks. Therefore, the only significant
difference among treatments is the one shown at the beginning of Sect. 4.2 about the
distribution of (CE(L6) − CE(L5)) if combined with the distribution of ( j10 − j4) ,
i.e., the two conditions leading to state a subject’s coherent-ambiguity attitude.

5 A critical discussion vis-a-vis the experimental literature on ambiguity
aversion

This section will attempt to frame this contribution into the experimental literature
on ambiguity aversion. An overview of previous contributions in the literature that
are relevant to this paper is presented in order to support our experimental design and
to compare experimental results. To afford maximum clarity, this section has been
divided into four sub-sections, each treating different but complementary issues. The
first subsection will focus on the difference among risk, uncertainty, and ambiguity so
as to clarify the definition given to each of these terms. Second, the issue of designing
experiments to discriminate between theories of ambiguity as well as to operationalize
one theory will be discussed. This study belongs to the latter category and evaluates
the structure of (risk and) ambiguity attitudes within the KMM model. Third, the
experimental methods used to elicit risk and ambiguity will be looked at critically,
taking into account previous experimental tests of these instruments. Finally, the fourth
sub-section will compare our results with previous findings in the literature.

5.1 Risk, uncertainty, and ambiguity: distinguishing close concepts

The term “uncertainty” is often used as synonymous of both risk and ambiguity
even though these two terms identify different situations. The fundamental difference
between risk and ambiguity concerns the distinction between whether probability is
known or unknown. This distinction can take different names: “measurable” uncer-
tainty or risk, with known probabilities, and “unmeasurable” uncertainty or ambigu-
ity, with unknown probabilities (Knight 1921); “precise” versus “vague” probability
(Savage 1954); “unambiguous” versus “ambiguous” probability (Ellsberg 1961); and
so forth. Espousing the general definition of risk, Harrison (2011) also provides a
distinction between uncertainty and ambiguity based on the availability of relevant
information to form subjective belief distribution: “When we have to worry about the
underlying nondegenerate distribution, when reduction of compound lotteries is not
assumed, then we have moved from the realm of (subjective) risk to uncertainty. And,
when the individual does not even have enough information to form any subjective
belief distribution, degenerate or non-degenerate, we are in the realm of ambiguity” (p.
352). However, in the literature, the term “ambiguity” is also often introduced when
the individual forms a certain subjective belief distribution, but she faces “situations
in which some events do not have an obvious, unanimously agreeable, probability
assignment” (Ghirardato 2004, p. 36).39

39 Ghirardato (2004) also discusses the issue of the formal definition of ambiguity and ambiguity attitude.
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Therefore, according to Harrison (2011), the KMM model pertains to the “mea-
surable” uncertainty or risk realm. Consequently, all decision tasks of treatments 1–2
and decision tasks 1–5 of treatment 3 deal with risk and uncertainty. Only decision
tasks 6–10 of treatment 3 refer to ambiguity. However, if the term “ambiguity” is also
associated to the case where the reduction of compound lottery axiom does not apply,
then also decision tasks 6–10 of treatments 1–2 will also refer to ambiguity. This is
the meaning given to the term “ambiguity” within KMM and in this paper too.

5.2 Discriminating between theories versus operationalizing one theory

This sub-section reviews two broad classes of empirical contributions in decision
making under ambiguity. The first class includes previous empirical works aimed
at designing experiments to discriminate between ambiguity models. These can be
referred to as “horse race” tests. The second class includes empirical contributions
aimed at operationalizing one model of ambiguity aversion. Within this latter class,
only studies implementing a KMM-type experimental environment are reviewed here.

Within the first class, several papers have empirically investigated the descriptive
and predictive power of theories of decision making under ambiguity.40 Some of them
have studied ambiguity attitude by purposefully excluding two-stage probability mod-
els.41 Complementary to these, some other papers (e.g., Conte and Hey 2013) investi-
gated ambiguity attitude considering only two-stage probability models. Some others
have produced experimental designs aimed at comparing the performance of KMM
with that of non-expected utility models (Halevy 2007; Ahn et al. 2011). Halevy (2007)
suggests that there is no unique theoretical model that universally captures ambiguity
preferences.42 In the same line, Conte and Hey (2013) compare the performance of dif-
ferent theoretical decision models—expected utility, KMM, rank-dependent expected
utility, and Alpha model of Ghirardato et al. (2004)—through an experimental design
slightly different from Halevy’s (2007). In fact, even though these two studies are
similar for what concerns the implementation of ambiguity in the laboratory, they
present some differences in the methodology.43 Conte and Hey’s (2013) results sug-
gest that KMM performs best among the four tested models.44 However, not all exper-

40 Early literature is surveyed in Camerer and Weber (1992) and Camerer (1995).
41 See for example Hey et al. (2010) and Hey and Pace (2014): both experimental designs are aimed at
testing only non-two stage probability models.
42 In particular, Halevy (2007) found that 15–20% of his subjects are ambiguity-neutral and able to reduce
compound lotteries. Another 35 % of subjects exhibit ambiguity aversion (proneness) together with aversion
(proneness) to mean-preserving spreads in the second-order distribution. Both these categories of subjects
are consistent with KMM.
43 Indeed, both papers use Ellsberg-type urns. In particular, Conte and Hey (2013) adopted the same
urns 2 and 3 as Halevy (2007) that reproduce two-stage lotteries. However, Conte and Hey (2013) use
exclusively pairwise questions to reduce the number of parameters to be estimated, no meaning to estimate
a utility function. Differently, Halevy (2007) asks subjects to state certainty equivalents through the BDM
mechanism so as to infer a utility function from the subject’s answers.
44 The authors found results in favor of KMM both through individual estimates (56 % of subjects show
behavior consistent with KMM) and by classifying subjects according to posterior probabilities of each of
them being coherent with one out of four types of preferences (50 % for KMM).
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imental studies offer support for KMM. Ahn et al. (2011) found a result opposite to
Conte and Hey’s (2013) by performing a portfolio choice experiment45 aimed at inves-
tigating rank-dependent theories versus smooth ambiguity. Their tests of significance
suggest that the majority of subjects are well described by the subjective expected
utility model. Moreover, among the remaining subjects, KMM fails to explain the
behavior of those showing ambiguity aversion.

Thus far, not many experiments have been designed with the explicit purpose of test-
ing behavioral predictions within the KMM model only. Chakravarty and Roy (2009)
is one of them. They have tried to separate attitude toward risk from that toward ambi-
guity using the multiple price list method as the only experimental instrument. Their
main objective consisted of investigating potential differences in subjects’ behavior
under uncertainty over gains versus uncertainty over losses. They found a positive cor-
relation between risk attitude and ambiguity attitude in the domain of gains (although,
in the aggregate, subjects are risk-averse and ambiguity-neutral). Their result is not
sole. Indeed, many empirical studies have found such positive correlation;46 only few
have no correlation whatsoever.47 Within this class of studies, Andersen et al. (2009) is
the only experimental work that clearly states that the correlation between risk attitude
and ambiguity attitude can be negative. They estimated attitudes toward ambiguity,
attitudes toward risk, and subjective probabilities in a rigorous manner within a KMM-
type model, by making some parametric assumptions about the form of the distribution
of the priors and the uncertain process. They found subjects who are risk-averse, and
at the same time ambiguity-loving.

A new approach, which is becoming popular in experimental economics, is based
on adopting mixture models. These models have an important advantage with respect
to subject-by-subject estimation through competing models. Heterogeneity across
individuals—a common finding of experimental studies on decision making under
risk and ambiguity—is captured within a unique model, which merges different the-
ories explaining the behavior of different subjects in the same sample. Several papers
have adopted this approach in decision making under risk. Cohen et al. (2011) consider
EU and cumulative prospect theory (Tversky and Kahneman 1992); they also include
a discussion of the previous use of mixture models in economics. Conte et al. (2011)
consider EU and rank-dependent expected utility. More recently, this approach has
also been adopted in decision making under ambiguity. Conte and Hey (2013), along
with a subject-by-subject estimation of individuals’ preference functionals, estimated
a mixture of EU, KMM, rank-dependent expected utility and Alpha model (Ghirardato
et al. 2004).

From a methodological point of view, these mixture models can be interpreted
as a hybrid of the two classes of empirical contributions presented above, i.e., those
discriminating between theories and those operationalizing one theory.

45 Ahn et al. (2011) implemented an experimental design where subjects are asked to choose between
different lotteries that duplicate the return of a portfolio containing a safe asset and an ambiguous asset.
46 Among several studies finding a positive correlation, see Lauriola and Levin (2001), Di Mauro and
Maffioletti (2004), Bossaerts et al. (2010), and Ahn et al. (2011).
47 Among the few detecting no correlation, see Cohen et al. (1987) and Cohen et al. (2011).
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Among those studies fitting none of the three categories above, a relevant one for
comparisons with this paper is Abdellaoui et al. (2011), which investigates the relation-
ship between attitude toward risk, compound lotteries and ambiguity in a model-free
setting.

5.3 Strengths and weaknesses of our instruments

This subsection will critically evaluate the risk and ambiguity elicitation methods
used in this study. In particular, discussion will revolve around the flexibility of such
instruments in coping with other questions not covered in this study.

It should be recalled that risk attitude was elicited through both a portfolio choice
method (tasks 1–4) and a BDM mechanism (task 5).

It has been highlighted above that risk-attitude elicitation through portfolio choices
(tasks 1–4) here carried out gives results similar to the more standard Holt and Laury
(2002) method. If on the one hand this corroborates our first risk-elicitation instrument,
on the other hand it raises doubt as to whether such instrument may suffer from the
same “order effects” problem of Holt and Laury (2002). In fact, moving from task
1 to task 4, the subject’s “initial wealth” is non-decreasing (see Table 3). Further, in
tasks 3–4, the lotteries proposed always have an expected value higher than those in
tasks 1–2 (almost twice on average, as shown in Table 7 in the Appendix). Harrison et
al. (2005) demonstrated and Holt and Laury (2005) confirmed the possibility of order
effects by scaling up real payments by 10 or 20 times. In our design, this might not
represent a problem, given that the scale from tasks 1–2 to tasks 3–4 is very low (1.8
times on average). However, our design is easily adaptable to check for order effects.
The order of presentation of tasks 1–4 may be inverted in some of the experimental
sessions, and possible differences in the distribution of the risk-aversion parameter
between tasks 1–4 sessions and tasks 4–1 sessions may be investigated.

Our experimental design may be further refined to disentangle risk-neutral subjects
and risk-loving ones, which in Tables 4 and 5 are all assigned (respectively, CARA
and CRRA) index 1. This will only require in tasks 1–4 some slight alterations in the
set of possible lotteries in Table 2.48

The risk-attitude elicitation in task 5 also involves some reliability problems, pointed
out in the literature by both experimental economists and theorists.

From an experimental point of view, Plott and Zeiler (2005) have expressed many
concerns with the way that the BDM mechanism is popularly implemented. Our
instructions and implementation of the BDM minimize these potential problems by
taking into account almost all of the features of Plott and Zeiler’s (2005) suggested

48 For example, the set of possible lotteries l j
t (with j = A, B, C, D, and t = 1, 2, 3, 4) in Table 2 may be

enriched with just one lottery in task 4, namely l E
4 = (40, 0.5; 0, 0.5). Then, under the CRRA specification,

subjects with RRA ∈ (−0.146, 0.123) would pick (l
j1
1 , l

j2
2 , l

j3
3 , l

j4
4 ) = (D, D, D, D) and subjects with

RRA ∈ (−∞, −0.146) would pick (l
j1
1 , l

j2
2 , l

j3
3 , l

j4
4 ) = (D, D, D, E). Notice that this would lead to

disentangle risk-neutral and risk-loving subjects as in Table 3 (p. 1649) of Holt and Laury (2002).
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procedure.49 In this respect, to minimize the confusion effect,50 before task 5 of our
experiment, subjects have received a thorough explanation of our BDM mechanism
together with some numerical examples.51 Furthermore, as extensively underlined in
Sect. 2, a physical randomizing device is used to encourage each subject to see the
random buying price for her lottery (i.e., the one randomly selected by the “drawer”)
as independent of her stated selling price. This also held for tasks 6–9, where the
BDM was used for ambiguity-attitude elicitation. Finally, anonymity in decisions and
in earnings was ensured. The similarities between our implementation of the BDM
and the one in Plott and Zeiler (2005) may have prevented the endowment effect. In
fact, Plott and Zeiler (2005) have found it to be insignificant, when sufficient controls
have been introduced in the BDM implementation.52

From a theoretical point of view, several researchers (e.g., Holt 1986) have pointed
out that, when preferences do not satisfy the axioms underlying EU theory, the BDM
mechanism may not elicit valuations accurately. In this regard, Karni and Safra (1987)
have shown that the certainty equivalent of a lottery elicited using the BDM mechanism
respects the preference ordering if and only if preferences satisfy the independence
axiom. This is assumed in our theoretical analysis, as we rely on KMM in choice under
ambiguity and as a consequence on EU in choice under risk.

About our ambiguity-elicitation instruments, an important issue raised in the lit-
erature is subjects’ thinking about strategic behavior and/or manipulations by the
experimenter in Ellsberg-type tasks (Schneeweiss 1973; Kadane 1992). At the end of
Sect. 2, we have presented all the features of the experimental design introduced to
avoid such problems. First, all our instruments are physical instruments, and we never
rely on computer-generated realizations of random processes. Second, all subjects
have the chances to check any randomizing instrument before its implementation.
Further, the randomization was handled in a manner so as to ensure that subjects
did not assume that the experimenter was picking numbers and/or rearranging urns
composition after “knowing” what the subjects choices were. For example, lotteries’
random buying prices in the BDM in tasks 5–9 were drawn once for all these tasks
before task 5 began. In treatment 1 and treatment 3, the composition of the unknown
small urn used for tasks 6–10 was randomly determined before the beginning of task 6
(see Fig. 1). Both the unknown small urns (treatment 1 and treatment 3) and the trans-
parent construction urn (treatment 2) were left on a table in front of the experimental

49 See Harrison and Rutström (2008) for a deeper analysis of these and additional issues, as well as
alternative elicitation methods. They also review useful techniques to estimate behavioral errors that could
arise in the calculation of reservation prices through the BDM mechanism.
50 An important practical problem of each BDM mechanism is that it is complicated, and if subjects fail
to understand it, the elicited values might reflect their confusion and not their valuation.
51 Differently from what recommended by Plott and Zeiler (2005), we did not introduce any practice round
before task 5. This is because we did not want subjects to have any feedback about random draws of buying
prices before going through the BDM mechanism in tasks 5–9. However, before task 5, both the drawer
and each subject participating in the experiment were given the chance to check that each of the four
envelopes—through which the BDM was physically implemented—contained the eleven numbered tickets
here indicated in footnote 5. Further, the fact that instructions of each new task were given prior to that task
allowed subjects to focus on a BDM at a time.
52 To test for possible endowment effects, our experimental design should be extended to allow subjects to
act as lottery sellers in some tasks (as in our experiment) and as lottery buyers in others.
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subjects from task 6 until the end of the experiment, i.e., until they were eventually
used. In treatment 3, an additional random draw was made at the beginning of the
experiment to determine the color of the “winning balls” in the unknown small urn.53

Finally, all the previous operations were physically carried out by one of the subjects
showing up for the experimental session, randomly chosen before its beginning and
not participating in the experiment. All these implementation devices were meant to
make our subjects aware that no manipulation from the experimenter was possible
about the composition of the unknown small urn used for the ambiguous tasks.

Although the way we create “ambiguous” decision settings may seem less natural
than alternative physical means in the experimental literature (e.g., the Bingo blower
used by Andersen et al. 2009, and by Hey et al. 2010), it is characterized by higher
flexibility and lower distortions on the level of ambiguity a subject “objectively”
perceives. For example, with a Bingo blower, one cannot physically produce our tasks
6 and 10, characterized by the greatest possible level of ambiguity. In fact, during the
rotations of the Bingo blower, subjects cannot count the balls of each color, but they
can easily realize that there are balls of each color. Further, looking at its rotations,
different subjects in the same session may have a different perception of the level of
ambiguity, e.g., depending on the specific attention paid to the rotations and on the
physical distance of the subject from the Bingo cage.

One last comment should be made about our payment protocol. In our experiment,
only one of the ten decision tasks was randomly selected at the end of the experiment
to determine participants’ final earnings. Therefore, we use a random-lottery incen-
tive mechanism (henceforth RLIM) with the twofold goal of obtaining no interaction
between different decision tasks and proposing bigger stakes to our experimental sub-
jects.54 In recent years, this payment protocol has become the most used incentive
system for individual choice experiments, and many studies have used and tested it
with success.55 However, any payment protocol might in principle create distortions
in individual choice experiments, and even RLIM is not exempt from this potential
problem, as recent studies have clearly shown.56 These recent findings have reported

53 See footnote 9.
54 A possible theoretical criticism of the random-lottery incentive mechanism, put forward by Holt (1986),
was demonstrated not to occur empirically by Starmer and Sugden (1991).
55 Among the most recent, see Hey and Lee (2005) and Lee (2008).
56 Cox et al. (2012) have compared the performance of several payment mechanisms in individual choice
tasks and found a new mechanism—with the same expected value of payoff incentives as RLIM—that
is less biased than RLIM. With this new mechanism, at the end of the experiment, one state of nature is
randomly drawn, and then all (comonotonic) lotteries chosen in the experiment are paid out for this state
of nature and the payoff divided by the number of tasks. Moreover, Harrison and Swarthout (2012) have
shown that preference estimates obtained under RLIM differ from those obtained in a one-task design and,
more generally, documented concerns about the use of payment protocols over multiple choices that, as
RLIM, assume the validity of the independence axiom. Similar concerns may be ascribed to the fact that
the application of RLIM as payment protocol requires no violation of the reduction of compound lotteries
axiom (henceforth ROCL). In this regard, Harrison et al. (2012) have found no violation of ROCL when
subjects are presented with only one choice and violation of ROCL when subjects are presented with many
choices and RLIM is used as a payment protocol.
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distortions linked to the application of RLIM to experiments with several tasks under
risk. When unknown lotteries are introduced within one or more tasks (as in this
paper), distortions due to the use of RLIM as a payment protocol may be amplified.
However, the opposite hypothesis may be equally reasonable in our study: due to the
greater “complexity” an ambiguous task involves, the subject may focus more on each
single task, as there is a compound lottery even within the task itself. This could lead
the subject to give less importance to the way a single task is selected for payment.
Further research should explore and clarify this issue.

5.4 A comparison of our results with similar empirical studies

Within the two broad classes of empirical contributions in decision making under
ambiguity, this paper belongs to the second class: the KMM model is made opera-
tional and the structure of risk and ambiguity attitudes is evaluated within this model.
However, in this subsection, our study is compared with the closest previous contri-
butions belonging to all groups indicated in Sect. 5.2. In particular, we focus here on
the differences in findings.

Within the first group of studies that have produced experimental designs
aimed at comparing the performance of KMM to that of non-expected utility
models, Halevy (2007) is certainly the closest to our study in terms of experi-
mental design. In fact, we use a similar BDM mechanism to elicit risk attitude
and value-ambiguity attitude. However, there are two main differences. On the
one hand, compared to Halevy (2007), in our experimental design, the variation
of the subject’s certainty equivalent is studied for a larger number of ambigu-
ity levels and of distributions of second-order probabilities. Therefore, a richer
set of theoretical relations—that a subject’s decisions should satisfy to be consis-
tent with KMM—is formulated. On the other hand, three treatments—binomial,
uniform, and unknown—are proposed between-subject. Halevy (2007) only pro-
poses the last two treatments, and, more importantly, within-subject. With this
design, he can examine the relation between attitude toward ambiguity and atti-
tude toward reduction of compound (objective) lotteries, a question which is
outside our scope of interest. Ahn et al. (2011) is also close to our experi-
ment design. However, differently from their study, in each task of our experi-
ment the asset contained in the portfolio is either safe or ambiguous. Moreover,
we simplify the choice problem by limiting the choice set to only four possi-
ble portfolios and considering an ambiguous environment with only two states of
nature.

The following is a discussion of our design against studies in the second group, i.e.,
as our study, those explicitly designed to operationalize KMM. Here, experimental
results will also be compared.

Similarly to Chakravarty and Roy (2009), our study separates attitude toward risk
from that toward ambiguity. However, their main purpose radically differs from ours.
They investigate potential differences in subjects’ behavior under uncertainty over
gains versus uncertainty over losses, while in our experiment there are no negative
outcomes. Moreover, we use portfolio choice questions and the BDM mechanism to
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elicit risk and ambiguity attitude, while they use the multiple price list method. As
anticipated above, they find a positive correlation between risk attitude and ambigu-
ity attitude in the domain of gains, while our results tend to lean toward a negative
correlation.

Our experimental findings about the performance of KMM are in line with Conte
and Hey (2013): almost 9 out of 10 subjects in our experiment are classified as having
a coherent-ambiguity attitude within the KMM model, and almost 8 out of 10 of
them satisfy all theoretical predictions derived within that model. Coherent-ambiguity-
neutral subjects are those who have the highest percentage of compliance with KMM
predicted behavior. Recalling that for these subjects KMM reduces to the (subjective)
expected utility model, we can relate this result to the one found by Halevy (2007)
about the higher ability of ambiguity-neutral subjects to reduce compound lotteries.

Further, we find that highly-risk-averse subjects are more frequently ambiguity-
loving than ambiguity-averse. This brings up the possible existence of a negative
correlation between risk attitude and ambiguity attitude, as the one found by Andersen
et al. (2009). It should be noticed that our experimental design only reveals the sign of
the subject’s (coherent)-ambiguity attitude, i.e., whether she is (coherent)-ambiguity-
averse, neutral, or loving. Sorting all classified subjects in three groups according to this
sign, we find significant differences in the distributions of the degree of risk aversion
among the three groups. In particular, (coherent)-ambiguity-averse and (coherent)-
ambiguity neutral subjects on average have a low degree of risk aversion, while the
vast majority of (coherent)-ambiguity-loving subjects is highly-risk-averse. This point
requires a more thorough discussion, provided in the next section.

Finally, we find that the percentage of coherently-ambiguity-averse subjects is lower
in the binomial than in the uniform and in the unknown treatment. However, only the
difference between the binomial and the unknown treatment is statistically significant.
This result is partially in line with Abdellaoui et al. (2011), for the part where they
state that attitude toward ambiguity and attitude toward compound risks are related but
distinct, with this relationship being quite sensitive to the type of compound risks con-
sidered. They define as compound risk those decision tasks where the second-order
probability distribution over one-stage lotteries is objective: both our binomial and
our uniform treatment belong to this category. In our study too, therefore, the rela-
tion between what they call ‘ambiguity’ (our unknown treatment) and what they call
‘compound risk’ depends on the type of compound risk considered, e.g., binomial or
uniform. However, there are two crucial differences between our experimental design
and the one implemented in Abdellaoui et al. (2011). First, although they analyze the
same uniform case as in our study, they do not treat the binomial case, focusing instead
on the hypergeometric case.57 Second and more importantly, as Halevy (2007), they
have a within-subject design, while in our study a subject only participates in one treat-
ment, hence facing only one of the second-order probability distributions (binomial,
uniform, or unknown) that we generate so as to create ambiguity.

57 Their actual finding is that the hypergeometric case is the one having the strongest relationship with
ambiguity attitude.
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6 Conclusion

This study indicates ways to identify two features of smooth ambiguity attitude à la
KMM: value-ambiguity attitude and choice-ambiguity attitude. A value-ambiguity-
averse subject values an ambiguous lottery less than its unambiguous equiva-
lent with the same mean probabilities. A choice-ambiguity-averse subject always
reduces her demand for the risky asset when the distribution of outcomes becomes
ambiguous.

We elicit these two attitudes in a series of experimental decision tasks designed
in order to match the main insights of the KMM model. Our decision tasks are
parameterized so that a value-ambiguity-averse (-loving) subject should necessarily
behave as a choice-ambiguity-averse (-loving) one, i.e., showing coherent-ambiguity
aversion. Indeed, we find that 88 % of our subjects (92/105) show a coherent-
ambiguity attitude, independent of the treatment, i.e., the distribution of second-
order probabilities (binomial, uniform, or unknown). This result clearly indicates
an equivalence between value-ambiguity aversion and choice-ambiguity aversion
in subjects participating in our experiment. However, we do not find the same
equivalence between strong value-ambiguity aversion and strong choice-ambiguity
aversion.

A key contribution of this paper is the theoretical analysis of ambiguous tasks
designed to evaluate the structure of risk and ambiguity attitudes within the KMM
model. In Sect. 3, we have provided two kinds of theoretical predictions: those hold-
ing independent of the subject’s (coherent)-ambiguity attitude and those stating spe-
cific behavior in correspondence of a specific attitude to (coherent)-ambiguity. We
find that the former are satisfied by more than 90 % of our classified subjects (84/92),
while the latter are complied with by more than 80 % of classified subjects (74/92).
Overall, a large number of classified subjects (76 %, 70/92) satisfy all our theo-
retically derived constraints. This remarkably high compliance of subjects’ behav-
ior with KMM indirectly corroborates both our operational definition of (coherent)-
ambiguity attitude and our experimental design being a correct representation of the
main features of KMM in the laboratory. We do not find any significant correlation
between compliance with KMM and gender, age, level of education, and degree of risk
attitude.

A secondary contribution of this paper concerns the analysis of possible relations
between risk attitude and ambiguity attitude. We elicit risk attitude through the same
two methods (portfolio choice and BDM) used to elicit the two features (respectively,
choice and value) of coherent-ambiguity attitude. Risk-aversion orderings provided
by the two methods are correlated. Relying on CARA or CRRA orderings of risk
aversion built through the first method, we find that more than 1/2 of subjects may
be classified as CARA and almost 3/4 as CRRA. Under both specifications, we find a
negative correlation between the degree of risk aversion elicited in the unambiguous
tasks and the fact of showing coherent-ambiguity aversion in the ambiguous tasks.
However, this correlation is significant if we consider only choice-ambiguity attitude.
More specifically, in our sample many coherent-ambiguity-averse subjects have a low
degree of risk aversion, while the most part of coherent-ambiguity-loving subjects
have a high degree of it (77 % of the coherent-ambiguity-loving subjects are in the last
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two quintiles of the CARA index distribution, and 73 % are in the last two quintiles of
the CRRA index distribution).

A possible explanation for this apparently surprising result is as follows. This result
may be linked to the riskiness of the second-stage lottery the subject chooses in the
unambiguous task (that is the same she is assigned in the ambiguous task). The higher
the degree of risk aversion, the less risky the chosen lottery in the unambiguous task, the
lower the subject’s value for this lottery, then, the lower the reduction of the subject’s
value for this lottery when the distribution of outcomes becomes ambiguous. The
positive correlation between the riskiness of the lottery assigned in the most ambiguous
task and both value-ambiguity aversion and choice-ambiguity aversion that we find in
the data supports this explanation. However, this result is found in a between-subject
design: we ask a subject to state her certainty equivalent under different levels of
ambiguity of the setting, but always facing the same pair of (second-stage) lottery
outcomes. One may test whether the effect found between-subject also holds when
the same subject is asked to state her attitude toward ambiguity for different pairs of
lottery outcomes. This point is left for further research.

The third contribution of this paper concerns the analysis of subjects’ attitudes and
decisions in ambiguous tasks with specific distributions of second-order probabilities.
We find that the percentage of coherently-ambiguity-averse subjects is lower (though
not significantly) in the binomial than in the uniform treatment. This was easily pre-
dictable, as the latter distribution of second-order probabilities is a mean-preserving
spread of the former. We also verify the prediction of a significantly lower percentage
of coherent-ambiguity-averse subjects in the binomial than in the unknown treatment:
indeed the latter is intrinsically more ambiguous than the former. A surprising fact is
the absence of a significant difference in the percentage of coherent-ambiguity-averse
subjects between the uniform and the unknown treatment. This may lead to validate
the assumption that subjective second-order probabilities may be thought as uniformly
distributed when the subject is not given any information about the composition of the
unknown urn.
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7 Appendix

7.1 Appendix A

For each lottery l j
t = (x j

t , 0.5; x j
t , 0.5) in Table 2, the expected value and the standard

deviation are respectively equal to EV = 0.5(x + x) and σ = 0.5(x − x). The two
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Table 7 Risk attitude elicitation method: reinterpretation in terms of EV, σ, and (dσ/d EV )

Lottery Task t = 1 Task t = 2 Task t = 3 Task t = 4

EV j
1 σ

j
1

dσ
j

1

d EV j
1

EV j
2 σ

j
2

dσ
j

2

d EV j
2

EV j
3 σ

j
3

dσ
j

3

d EV j
3

EV j
4 σ

j
4

dσ
j

4

d EV j
4

j = A 9.0 3.0 3.0 8.5 2.5 5.0 17.0 3.0 3.0 16.5 2.5 5.0

j = B 10.0 6.0 3.0 9.0 5.0 5.0 18.0 6.0 3.0 17.0 5.0 5.0

j = C 11.0 9.0 3.0 9.5 7.5 5.0 19.0 9.0 3.0 18.0 10.0 5.0

j = D 12.0 12.0 3.0 10.0 10.0 5.0 20.0 12.0 3.0 19.0 15.0 5.0

lottery outcomes can be expressed in terms of the two moments, i.e., x = EV + σ

and x = EV − σ . In Table 7, the set of lotteries in tasks 1–4 are classified in terms of
the triple

(

EV, σ, dσ
d EV

)

, where the ratio dσ
d EV is the same for all lotteries in the same

task. In particular, it is dσ
d EV = 3 in tasks 1 and 3, and dσ

d EV = 5 in tasks 2 and 4.

7.2 Appendix B
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Fig. 8 Distribution of CARA and CRRA index by treatment
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7.3 Appendix C
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Fig. 9 Distribution of subjects’ guess on the number of “winning balls” in tasks 6–9 by ambiguity attitude

7.4 Appendix D
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