147 research outputs found
An Improved PSO Algorithm for Generating Protective SNP Barcodes in Breast Cancer
BACKGROUND: Possible single nucleotide polymorphism (SNP) interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO) method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls) associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR) values (1.268 to 0.848; p<0.05) for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p<0.05 to 0.001). Using PSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; p<0.05 to 0.001). Based on the results of 20 simulations, medians of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∼10) are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. CONCLUSIONS/SIGNIFICANCE: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer
How are gender equality and human rights interventions included in sexual and reproductive health programmes and policies: A systematic review of existing research foci and gaps
The importance of promoting gender equality and human rights in sexual and reproductive health (SRH) programmes and policies has been affirmed in numerous international and regional agreements, most recently the 2030 Agenda for Sustainable Development. Given the critical role of research to determine what works, we aimed to identify research gaps as part of a broader priority setting exercise on integrating gender equality and human rights approaches in SRH programmes and policies. A systematic literature review of reviews was conducted to examine the question: what do we know about how research in the context of SRH programmes and policies has addressed gender equality and human rights and what are the current gaps in research. We searched three databases for reviews that addressed the research question, were published between 1994-2014, and met methodological standards for systematic reviews, qualitative meta-syntheses and other reviews of relevance to the research question. Additional grey literature was identified based on expert input. Articles were appraised by the primary author and examined by an expert panel. An abstraction and thematic analysis process was used to synthesize findings. Of the 3,073 abstracts identified, 56 articles were reviewed in full and 23 were included along with 10 from the grey literature. The majority focused on interventions addressing gender inequalities; very few reviews explicitly included human rights based interventions. Across both topics, weak study designs and use of intermediate outcome measures limited evidence quality. Further, there was limited evidence on interventions that addressed marginalized groups. Better quality studies, longer-term indicators, and measurement of unintended consequences are needed to better understand the impact of these types of interventions on SRH outcomes. Further efforts are needed to cover research on gender equality and human rights issues as they pertain to a broader set of SRH topics and populations.Scopu
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions
Functional traits are expected to modulate plant competitive dynamics. However, how traits
and their plasticity in response to contrasting environments connect with the mechanisms
determining species coexistence remains poorly understood. Here, we couple field experiments
under two contrasting climatic conditions to a plant population model describing
competitive dynamics between 10 annual plant species in order to evaluate how 19 functional
traits, covering physiological, morphological and reproductive characteristics, are associated
with species’ niche and fitness differences. We find a rich diversity of univariate and multidimensional
associations, which highlight the primary role of traits related to water- and lightuse-
efficiency for modulating the determinants of competitive outcomes. Importantly, such
traits and their plasticity promote species coexistence across climatic conditions by enhancing
stabilizing niche differences and by generating competitive trade-offs between species.
Our study represents a significant advance showing how leading dimensions of plant function
connect to the mechanisms determining the maintenance of biodiversity
Product–process matrix and complementarity approach
The relationship between different types of innovation is analysed from three different approaches. On the one hand, the distinctive view assumes that the determinants of each type of innovation are different and therefore there is no relationship between them. On the other hand, the integrative view considers that the different types of innovation are complementary. Finally, the product–process matrix framework suggests that the relationship between product innovation and process innovation is substitutive. Using data from Spain belonging to the Technological Innovation Panel (PITEC) for the years 2008, 2009, 2010, 2011 and 2012, we tested which of the three approaches is predominant. To perform the hypothesis test, we used the so-called complementarity approach. We find that there is no unique relation. The nature of the relationship depends on the types of innovation that interact. Our most significant finding is that the relationship between product innovation and process innovation is complementary. This finding contradicts the proposal of the product–process matrix framework. Consequently, the joint implementation of both types of innovation generates a greater impact on the performance of a company than the sum of their separate implementation
Identifying Consensus Disease Pathways in Parkinson's Disease Using an Integrative Systems Biology Approach
Parkinson's disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p<0.01) from a joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the traditional comparison of one anatomical region between sets of patients and controls, we identified differentially expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles. Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-analysis of the over-represented pathways combined the expression and GWAS results using a Fisher's combined probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling (p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD
Significant Effects of Antiretroviral Therapy on Global Gene Expression in Brain Tissues of Patients with HIV-1-Associated Neurocognitive Disorders
Antiretroviral therapy (ART) has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND) persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing pathophysiological changes in the brain associated with HAND. Aberrantly expressed transcripts common to untreated and treated HAND may contribute to neurocognitive changes defying ART
Contrasting Geographical Distributions as a Result of Thermal Tolerance and Long-Distance Dispersal in Two Allegedly Widespread Tropical Brown Algae
BackgroundMany tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.Methodology/Principal FindingsSpecies delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance.Conclusions/SignificanceTectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical distribution of D. ciliolata, however, demonstrates that the north-south oriented continents do not present absolute dispersal barriers for species characterized by wide temperature tolerances
Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging
Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells
- …