7 research outputs found

    Model-based assessment of replicability for genome-wide association meta-analysis

    Get PDF
    Genome-wide association meta-analysis (GWAMA) is an effective approach to enlarge sample sizes and empower the discovery of novel associations between genotype and phenotype. Independent replication has been used as a gold-standard for validating genetic associations. However, as current GWAMA often seeks to aggregate all available datasets, it becomes impossible to find a large enough independent dataset to replicate new discoveries. Here we introduce a method, MAMBA (Meta-Analysis Model-based Assessment of replicability), for assessing the “posterior-probability-of-replicability” for identified associations by leveraging the strength and consistency of association signals between contributing studies. We demonstrate using simulations that MAMBA is more powerful and robust than existing methods, and produces more accurate genetic effects estimates. We apply MAMBA to a large-scale meta-analysis of addiction phenotypes with 1.2 million individuals. In addition to accurately identifying replicable common variant associations, MAMBA also pinpoints novel replicable rare variant associations from imputation-based GWAMA and hence greatly expands the set of analyzable variants.Peer reviewe

    Genomic prediction of alcohol-related morbidity and mortality

    Get PDF
    While polygenic risk scores (PRS) have been shown to predict many diseases and risk factors, the potential of genomic prediction in harm caused by alcohol use has not yet been extensively studied. Here, we built a novel polygenic risk score of 1.1 million variants for alcohol consumption and studied its predictive capacity in 96,499 participants from the FinnGen study and 39,695 participants from prospective cohorts with detailed baseline data and up to 25 years of follow-up time. A 1 SD increase in the PRS was associated with 11.2 g (=0.93 drinks) higher weekly alcohol consumption (CI = 9.85-12.58 g, p = 2.3 x 10(-58)). The PRS was associated with alcohol-related morbidity (4785 incident events) and the risk estimate between the highest and lowest quintiles of the PRS was 1.83 (95% CI = 1.66-2.01, p = 1.6 x 10(-36)). When adjusted for self-reported alcohol consumption, education, marital status, and gamma-glutamyl transferase blood levels in 28,639 participants with comprehensive baseline data from prospective cohorts, the risk estimate between the highest and lowest quintiles of the PRS was 1.58 (CI = 1.26-1.99, p = 8.2 x 10(-5)). The PRS was also associated with all-cause mortality with a risk estimate of 1.33 between the highest and lowest quintiles (CI = 1.20-1.47, p = 4.5 x 10(-8)) in the adjusted model. In conclusion, the PRS for alcohol consumption independently associates for both alcohol-related morbidity and all-cause mortality. Together, these findings underline the importance of heritable factors in alcohol-related health burden while highlighting how measured genetic risk for an important behavioral risk factor can be used to predict related health outcomes.Peer reviewe

    Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

    Get PDF
    Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP <5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P <5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P <4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.Peer reviewe

    Data Related to Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

    No full text
    Here we have included four sets of meta-analysis results: Meta-analysis of discovery and replication cohorts, combining genotyped Exome-chip and Axiom array content for (i) Smoking Initiation, (ii) Cigarettes per day, and (iii) Smoking Cessation, and (iv) meta-analysis of discovery cohorts for Pack Years.Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). SNV-trait associations with P < 5 × 10−8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. These novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation

    Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults

    No full text
    Co-morbid substance use is very common. Despite a historical focus using genetic epidemiology to investigate comorbid substance use and misuse, few studies have examined substance-substance associations using polygenic risk score (PRS) methods.Using summary statistics from the largest substance use GWAS to date (258,797- 632,802 subjects), GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), we constructed PRSs for smoking initiation (PRS-SI), age of initiation of regular smoking (PRS-AI), cigarettes per day (PRS-CPD), smoking cessation (PRS-SC), and drinks per week (PRS-DPW). We then estimated the fixed effect of individual PRSs on 22 lifetime substance use and substance use disorder phenotypes collected in an independent sample of 2463 young Australian adults using genetic restricted maximal likelihood (GREML) in Genome-wide Complex Trait Analysis (GCTA), separately in females, males and both sexes together.After accounting for multiple testing, PRS-SI significantly explained variation in the risk of cocaine (0.67%), amphetamine (1.54%), hallucinogens (0.72%), ecstasy (1.66%) and cannabis initiation (0.97%), as well as DSM-5 alcohol use disorder (0.72%). PRS-DPW explained 0.75%, 0.59% and 0.90% of the variation of cocaine, amphetamine and ecstasy initiation respectively. None of the 22 phenotypes including emergent classes of substance use were significantly predicted by PRS-AI, PRS-CPD, and PRS-SC.To our knowledge, this is the first study to report significant genetic overlap between the polygenic risks for smoking initiation and alcohol consumption and the risk of initiating major classes of illicit substances. PRSs constructed from large discovery GWASs allows the detection of novel genetic associations

    Associations between polygenic risk for tobacco and alcohol use and liability to tobacco and alcohol use, and psychiatric disorders in an independent sample of 13,999 Australian adults

    No full text
    Background: Substance use, substance use disorders (SUDs), and psychiatric disorders commonly co-occur. Genetic risk common to these complex traits is an important explanation; however, little is known about how polygenic risk for tobacco or alcohol use overlaps the genetic risk for the comorbid SUDs and psychiatric disorders. Methods: We constructed polygenic risk scores (PRSs) using GWAS meta-analysis summary statistics from a large discovery sample, GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN), for smoking initiation (SI; N = 631,564), age of initiating regular smoking (AI; N = 258,251), cigarettes per day (CPD; N = 258,999), smoking cessation (SC; N = 312,273), and drinks per week (DPW; N = 527,402). We then estimated the fixed effect of these PRSs on the liability to 15 phenotypes related to tobacco and alcohol use, substance use disorders, and psychiatric disorders in an independent target sample of Australian adults. Results: After adjusting for multiple testing, 10 of 75 combinations of discovery and target phenotypes remained significant. PRS-SI (R range: 1.98%–5.09 %) was positively associated with SI, DPW, and with DSM-IV and FTND nicotine dependence, and conduct disorder. PRS-AI (R: 3.91 %) negatively associated with DPW. PRS-CPD (R: 1.56 %–1.77 %) positively associated with DSM-IV nicotine dependence and conduct disorder. PRS-DPW (R: 3.39 %–6.26 %) positively associated with only DPW. The variation of DPW was significantly influenced by sex*PRS-SI, sex*PRS-AI and sex*PRS-DPW. Such interaction effect was not detected in the other 14 phenotypes. Conclusions: Polygenic risks associated with tobacco use are also associated with liability to alcohol consumption, nicotine dependence, and conduct disorder

    Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

    No full text
    Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P &lt; 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P &lt; 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P &lt; 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation
    corecore