171 research outputs found

    Long-term Prognostic Value of Cardiac MRI Left Atrial Strain in ST-Segment Elevation Myocardial Infarction

    Get PDF
    Background: Left atrial (LA) dysfunction is associated with morbidity and mortality. To the knowledge of the authors, the relationship of LA strain to long-term prognosis in participants with ST-segment elevation myocardial infarction (STEMI) is unknown. / Purpose: To evaluate LA strain as a long-term outcome predictor in STEMI in a prospective, multicenter cardiac MRI cohort. / Materials and Methods: Participants with STEMI who underwent primary percutaneous coronary intervention and cardiac MRI from 10 sites (EARLY-MYO-CMR registry, clinical trial number NCT03768453) were included. The parent study took place between August 2013 and December 2018. LA longitudinal strain and strain rate parameters were derived from cine cardiac MRI by using an in-house semiautomated method. Major adverse cardiac events (MACEs) were defined as cardiovascular death, myocardial reinfarction, hospitalization for heart failure, and stroke. The association between LA performance and MACE was evaluated by using time-dependent receiver operating characteristic analysis, Kaplan-Meier analysis, and multivariable Cox regression analysis. / Results: A total of 321 participants (median age, 59 years; age range, 27–75 years; 90% men) were included in this study. During median follow-up of 3.7 years, MACE occurred in 76 participants (23.7%). Participants with impaired reservoir (≤22%) and conduit strain (≤10%) had a higher risk of MACE than those with reservoir strain greater than 22% and conduit strain greater than 10% (P < .001). Reservoir strain (hazard ratio, 0.84; 95% confidence interval: 0.77, 0.91; P < .001) and conduit strain (hazard ratio, 0.81; 95% confidence interval: 0.73, 0.89; P < .001) were independent predictors for MACE after adjustment for known risk factors. Finally, LA reservoir and conduit strains provided incremental prognostic value over traditional outcome predictors (Uno C statistic comparing models, 0.75 vs 0.68; P = .04). / Conclusion: Assessment of left atrial strain, as a measure of left atrial function, provided incremental prognostic information to established predictors in ST-segment elevation myocardial infarction

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Associations between XPD Asp312Asn Polymorphism and Risk of Head and Neck Cancer: A Meta-Analysis Based on 7,122 Subjects

    Get PDF
    Background: To investigate the association between XPD Asp312Asn polymorphism and head and neck cancer risk through this meta-analysis. Methods: We performed a meta-analysis of 9 published case-control studies including 2,670 patients with head and neck cancer and 4,452 controls. An odds ratio (OR) with a 95 % confidence interval (CI) was applied to assess the association between XPD Asp312Asn polymorphism and head and neck cancer risk. Results: Overall, no significant association between XPD Asp312Asn polymorphism and head and neck cancer risk was found in this meta-analysis (Asn/Asn vs. Asp/Asp: OR = 0.95, 95%CI = 0.80–1.13, P = 0.550, Pheterogeneity = 0.126; Asp/Asn vs. Asp/Asp: OR = 1.11, 95%CI = 0.99–1.24, P = 0.065, P heterogeneity = 0.663; Asn/Asn+Asp/Asn vs. Asp/Asp: OR = 1.07, 95%CI = 0.97–1.19, P = 0.189, P heterogeneity = 0.627; Asn/Asn vs. Asp/Asp+Asp/Asn: OR = 0.87, 95%CI = 0.68–1.10, P = 0.243, Pheterogeneity = 0.089). In the subgroup analysis by HWE, ethnicity, and study design, there was still no significant association detected in all genetic models. Conclusions: This meta-analysis demonstrates that XPD Asp312Asn polymorphism may not be a risk factor for developing head and neck cancer

    Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Get PDF
    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit

    Listening for the landing: seismic detections of perseverance's arrival at Mars with InSight

    Get PDF
    The entry, descent, and landing (EDL) sequence of NASA's Mars 2020 Perseverance Rover will act as a seismic source of known temporal and spatial localization. We evaluate whether the signals produced by this event will be detectable by the InSight lander (3,452 km away), comparing expected signal amplitudes to noise levels at the instrument. Modeling is undertaken to predict the propagation of the acoustic signal (purely in the atmosphere), the seismoacoustic signal (atmosphere-to-ground coupled), and the elastodynamic seismic signal (in the ground only). Our results suggest that the acoustic and seismoacoustic signals, produced by the atmospheric shock wave from the EDL, are unlikely to be detectable due to the pattern of winds in the martian atmosphere and the weak air-to-ground coupling, respectively. However, the elastodynamic seismic signal produced by the impact of the spacecraft's cruise balance masses on the surface may be detected by InSight. The upper and lower bounds on predicted ground velocity at InSight are 2.0 × 10−14 and 1.3 × 10−10 m s−1. The upper value is above the noise floor at the time of landing 40% of the time on average. The large range of possible values reflects uncertainties in the current understanding of impact-generated seismic waves and their subsequent propagation and attenuation through Mars. Uncertainty in the detectability also stems from the indeterminate instrument noise level at the time of this future event. A positive detection would be of enormous value in constraining the seismic properties of Mars, and in improving our understanding of impact-generated seismic waves

    Toxoplasma gondii Clonal Strains All Inhibit STAT1 Transcriptional Activity but Polymorphic Effectors Differentially Modulate IFN gamma Induced Gene Expression and STAT1 Phosphorylation

    Get PDF
    Host defense against the parasite Toxoplasma gondii requires the cytokine interferon-gamma (IFNγ). However, Toxoplasma inhibits the host cell transcriptional response to IFNγ, which is thought to allow the parasite to establish a chronic infection. It is not known whether all strains of Toxoplasma block IFNγ-responsive transcription equally and whether this inhibition occurs solely through the modulation of STAT1 activity or whether other transcription factors are involved. We find that strains from three North American/European clonal lineages of Toxoplasma, types I, II, and III, can differentially modulate specific aspects of IFNγ signaling through the polymorphic effector proteins ROP16 and GRA15. STAT1 tyrosine phosphorylation is activated in the absence of IFNγ by the Toxoplasma kinase ROP16, but this ROP16-activated STAT1 is not transcriptionally active. Many genes induced by STAT1 can also be controlled by other transcription factors and therefore using these genes as specific readouts to determine Toxoplasma inhibition of STAT1 activity might be inappropriate. Indeed, GRA15 and ROP16 modulate the expression of subsets of IFNγ responsive genes through activation of the NF-κB/IRF1 and STAT3/6 transcription factors, respectively. However, using a stable STAT1-specific reporter cell line we show that strains from the type I, II, and III clonal lineages equally inhibit STAT1 transcriptional activity. Furthermore, all three of the clonal lineages significantly inhibit global IFNγ induced gene expression

    Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a progressive chronic kidney disease. To date there are no effective medicines to halt development and growth of cysts. In the present study, we explored novel effects of celecoxib (CXB), a COX-2 specific inhibitor, on primary cultures of human ADPKD cyst-lining epithelial cells. Primary cultures of ADPKD cyst-lining epithelial cells were obtained from five patients. Effects of CXB were measured by various assays to detect BrdU incorporation, apoptosis and proliferation in vitro. Additionally, effects of CXB on kidney weight, the cyst index, the fibrosis index, blood urea nitrogen (BUN), serum creatinine (SCr), serum 6-keto-PGF-1α, serum thromboxane-2 (TXB2) and renal PCNA expression were assessed in Han:SPRD rat, a well-characterized rodent model of PKD. CXB inhibited proliferation of ADPKD cyst-lining epithelial cells, blocked the release of VEGF from the cells and induced extensive apoptosis in a time- and dose-dependent manner. Moreover, CXB up-regulated the cell cycle negative regulator p21CIP/WAF1 and the cell cycle positive regulator Cyclin A, blocked ERK1/2 phosphorylation, induced apoptotic factors (Bax and caspase-3) and reduced Bcl-2. Furthermore, CXB inhibited the expression of VEGFR-2 and Raf-1 in ADPKD cyst-lining epithelial cells. CXB markedly reduced the cyst index, the fibrosis index, leukocyte infiltration, BUN, SCr, serum 6-keto-PGF-1α, TXB2 and renal PCNA expression in Han:SPRD rat. We demonstrated for the first time that CXB could suppress renal cyst-lining growth both in vitro and in vivo in Han:SPRD rat. CXB can inhibit proliferation, suppress cell cycle progression, and induce apoptosis in ADPKD cyst-lining epithelial cells through the inhibition of the VEGF/VEGFR-2/Raf-1/MAPK/ERK signaling pathway

    Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-<it>S</it>-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation <it>in vivo</it>.</p> <p>Methods</p> <p>We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different <it>GSTM1 </it>genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data.</p> <p>Results</p> <p>After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their <it>GSTM1 </it>genotype (i.e., <it>GSTM1+ </it>or <it>GSTM1- </it>null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 <it>m/z </it>and 9565 <it>m/z </it>were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively.</p> <p>Conclusions</p> <p>Cruciferous vegetable intake in <it>GSTM1+ </it>individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the <it>GSTM1</it>-genotype modulates the physiological response to cruciferous vegetable intake.</p
    corecore