5,543 research outputs found
On the Second Law of thermodynamics and the piston problem
The piston problem is investigated in the case where the length of the
cylinder is infinite (on both sides) and the ratio is a very small
parameter, where is the mass of one particle of the gaz and is the mass
of the piston. Introducing initial conditions such that the stochastic motion
of the piston remains in the average at the origin (no drift), it is shown that
the time evolution of the fluids, analytically derived from Liouville equation,
agrees with the Second Law of thermodynamics.
We thus have a non equilibrium microscopical model whose evolution can be
explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics
(2003
Magpie: towards a semantic web browser
Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through âstandardâ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the
interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased
semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our labâs web resources
Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state
The universality class, even the order of the transition, of the
two-dimensional Ising model depends on the range and the symmetry of the
interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the
critical temperature is generally the same due to self-duality. Here we
consider a sudden change in the form of the interaction and study the
nonequilibrium critical dynamical properties of the nearest-neighbor model. The
relaxation of the magnetization and the decay of the autocorrelation function
are found to display a power law behavior with characteristic exponents that
depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
Exactly solvable extended Hubbard model
In this work, we introduce long range version of the extended Hubbard model.
The system is defined on a non-uniform lattice. We show that the system is
integrable. The ground state, the ground state energies, the energy spectrum
are also found for the system. Another long range version of the extended
Hubbard model is also introduced on a uniform lattice, and this system is
proven to be integrable.Comment: 10 pages, Latex. Typoes are fixed in this revised versio
Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees
The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007â2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
Expert chess memory: Revisiting the chunking hypothesis
After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory
Continuous-wave room-temperature diamond maser
The maser, older sibling of the laser, has been confined to relative
obscurity due to its reliance on cryogenic refrigeration and high-vacuum
systems. Despite this it has found application in deep-space communications and
radio astronomy due to its unparalleled performance as a low-noise amplifier
and oscillator. The recent demonstration of a room-temperature solid- state
maser exploiting photo-excited triplet states in organic pentacene molecules
paves the way for a new class of maser that could find applications in
medicine, security and sensing, taking advantage of its sensitivity and low
noise. However, to date, only pulsed operation has been observed in this
system. Furthermore, organic maser molecules have poor thermal and mechanical
properties, and their triplet sub-level decay rates make continuous emission
challenging: alternative materials are therefore required. Therefore, inorganic
materials containing spin-defects such as diamond and silicon carbide have been
proposed. Here we report a continuous-wave (CW) room-temperature maser
oscillator using optically pumped charged nitrogen-vacancy (NV) defect centres
in diamond. This demonstration unlocks the potential of room-temperature
solid-state masers for use in a new generation of microwave devices.Comment: 7 pages, 4 figure
Discovery of Rapid X-ray Oscillations in the Tail of the SGR 1806-20 Hyperflare
We have discovered rapid Quasi Periodic Oscillations (QPOs) in RXTE/PCA
measurements of the pulsating tail of the 27th December 2004 giant flare of SGR
1806-20. QPOs at about 92.5Hz are detected in a 50s interval starting 170s
after the onset of the giant flare. These QPOs appear to be associated with
increased emission by a relatively hard unpulsed component and are seen only
over phases of the 7.56s spin period pulsations away from the main peak. QPOs
at about 18 and 30Hz are also detected, 200-300s after the onset of the giant
flare. This is the first time that QPOs are unambiguously detected in the flux
of a Soft Gamma-ray Repeater, or any other magnetar candidate. We interpret the
highest QPOs in terms of the coupling of toroidal seismic modes with Alfven
waves propagating along magnetospheric field lines. The lowest frequency QPO
might instead provide indirect evidence on the strength of the internal
magnetic field of the neutron star.Comment: Accepted for publication on ApJ Letters. 4 Pages, 3 figures.
emulateapj5 style use
- âŚ