115 research outputs found
Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement
We study the effect of the transverse degrees of freedom on the velocity of
sound in a Bose-Einstein condensate immersed in a one-dimensional optical
lattice and radially confined by a harmonic trap. We compare the results of
full three-dimensional calculations with those of an effective 1D model based
on the equation of state of the condensate. The perfect agreement between the
two approaches is demonstrated for several optical lattice depths and
throughout the full crossover from the 1D mean-field to the Thomas Fermi regime
in the radial direction.Comment: final versio
Transition to an Insulating Phase Induced by Attractive Interactions in the Disordered Three-Dimensional Hubbard Model
We study numerically the interplay of disorder and attractive interactions
for spin-1/2 fermions in the three-dimensional Hubbard model. The results
obtained by projector quantum Monte Carlo simulations show that at moderate
disorder, increasing the attractive interaction leads to a transition from
delocalized superconducting states to the insulating phase of localized pairs.
This transition takes place well within the metallic phase of the
single-particle Anderson model.Comment: revtex, 4 pages, 3 figure
Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry
Using an approximation scheme to deal with the centrifugal
(pseudo-centrifugal) term, we solve the Dirac equation with the screened
Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number
{\kappa}. Based on the spin and pseudospin symmetry, analytic bound state
energy spectrum formulas and their corresponding upper- and lower-spinor
components of two Dirac particles are obtained using a shortcut of the
Nikiforov-Uvarov method. We find a wide range of permissible values for the
spin symmetry constant C_{s} from the valence energy spectrum of particle and
also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of
antiparticle. Further, we show that the present potential interaction becomes
less (more) attractive for a long (short) range screening parameter {\alpha}.
To remove the degeneracies in energy levels we consider the spin and pseudospin
solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A
few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa,
the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes
zero (Coulomb potential field) and the non-relativistic limit of our solution
are studied. The nonrelativistic solutions are compared with those obtained by
other methods.Comment: 21 pages, 6 figure
Nonlinear time-series analysis of Hyperion's lightcurves
Hyperion is a satellite of Saturn that was predicted to remain in a chaotic
rotational state. This was confirmed to some extent by Voyager 2 and Cassini
series of images and some ground-based photometric observations. The aim of
this aticle is to explore conditions for potential observations to meet in
order to estimate a maximal Lyapunov Exponent (mLE), which being positive is an
indicator of chaos and allows to characterise it quantitatively. Lightcurves
existing in literature as well as numerical simulations are examined using
standard tools of theory of chaos. It is found that existing datasets are too
short and undersampled to detect a positive mLE, although its presence is not
rejected. Analysis of simulated lightcurves leads to an assertion that
observations from one site should be performed over a year-long period to
detect a positive mLE, if present, in a reliable way. Another approach would be
to use 2---3 telescopes spread over the world to have observations distributed
more uniformly. This may be achieved without disrupting other observational
projects being conducted. The necessity of time-series to be stationary is
highly stressed.Comment: 34 pages, 12 figures, 4 tables; v2 after referee report; matches the
version accepted in Astrophysics and Space Scienc
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
New exact solution of Dirac-Coulomb equation with exact boundary condition
It usually writes the boundary condition of the wave equation in the Coulomb
field as a rough form without considering the size of the atomic nucleus. The
rough expression brings on that the solutions of the Klein-Gordon equation and
the Dirac equation with the Coulomb potential are divergent at the origin of
the coordinates, also the virtual energies, when the nuclear charges number Z >
137, meaning the original solutions do not satisfy the conditions for
determining solution. Any divergences of the wave functions also imply that the
probability density of the meson or the electron would rapidly increase when
they are closing to the atomic nucleus. What it predicts is not a truth that
the atom in ground state would rapidly collapse to the neutron-like. We
consider that the atomic nucleus has definite radius and write the exact
boundary condition for the hydrogen and hydrogen-like atom, then newly solve
the radial Dirac-Coulomb equation and obtain a new exact solution without any
mathematical and physical difficulties. Unexpectedly, the K value constructed
by Dirac is naturally written in the barrier width or the equivalent radius of
the atomic nucleus in solving the Dirac equation with the exact boundary
condition, and it is independent of the quantum energy. Without any divergent
wave function and the virtual energies, we obtain a new formula of the energy
levels that is different from the Dirac formula of the energy levels in the
Coulomb field.Comment: 12 pages,no figure
Generalized Spin and Pseudo-Spin Symmetry: Relativistic Extension of Supersymmetric Quantum Mechanics
We consider the Dirac equation in 1+1 space-time dimension with vector,
scalar and pseudo-scalar coupling. In the traditional spin (or pseudo-spin)
symmetry, the difference between (or sum of) the scalar and vector potentials
is a constant. Here, however, we introduce an alternative symmetry where the
scalar or pseudo-scalar potential is proportional to the vector potential. This
leads to a model with significant extensions to supersymmetric quantum
mechanics. We present a formal solution of the problem but give explicit
analytic results for specific examples.Comment: 9 page
Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions
Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions.
In the strong electromagnetic fields, c c-bar and b b-bar are produced by
photonuclear and two-photon interactions; hadroproduction can occur in grazing
interactions. We present the total cross sections, quark transverse momentum
and rapidity distributions, as well as the Q Q-bar invariant mass spectra from
the three production channels. We consider AA and pA collisions at the
Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss
techniques for separating the three processes and describe how the AA to pA
production ratios might be measured accurately enough to study nuclear
shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including
17 figure
Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size
The optimized structure and electronic properties of neutral and singly
charged magnesium clusters have been investigated using ab initio theoretical
methods based on density-functional theory and systematic post-Hartree-Fock
many-body perturbation theory accounting for all electrons in the system. We
have systematically calculated the optimized geometries of neutral and singly
charged magnesium clusters consisting of up to 21 atoms, electronic shell
closures, binding energies per atom, ionization potentials and the gap between
the highest occupied and the lowest unoccupied molecular orbitals. We have
investigated the transition to the hcp structure and metallic evolution of the
magnesium clusters, as well as the stability of linear chains and rings of
magnesium atoms. The results obtained are compared with the available
experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table
Thermal Density Functional Theory in Context
This chapter introduces thermal density functional theory, starting from the
ground-state theory and assuming a background in quantum mechanics and
statistical mechanics. We review the foundations of density functional theory
(DFT) by illustrating some of its key reformulations. The basics of DFT for
thermal ensembles are explained in this context, as are tools useful for
analysis and development of approximations. We close by discussing some key
ideas relating thermal DFT and the ground state. This review emphasizes thermal
DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in
Warm Dense Matter", F. Graziani et al. ed
- âŠ