107 research outputs found

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    Year 1 of the Legacy Survey of Space and Time (LSST): Recommendations for Template Production to Enable Solar System Small Body Transient and Time Domain Science

    Get PDF
    The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will discover ~6 million solar system planetesimals, providing in total over a billion photometric and astrometric measurements in 6 broad-band filters. Rubin Observatory's automated data reduction pipelines will employ difference imaging; templates representing the static sky will be subtracted from the nightly LSST observations in order to identify transient sources, including solar system moving objects. These templates are expected to be generated by coadding high quality images of the same pointing from the previous year's survey observations. The first year of LSST operations will require a different method for generating templates, if solar system discoveries are to be reported daily like Year 2 and beyond. We make recommendations for template production in the LSST's first year and present the opportunities for solar system small body transient and time domain science enhanced by this change

    Refinement of the convex shape model and tumbling spin state of (99942) Apophis using the 2020-2021 apparition data

    Get PDF
    Context. The close approach of the near-Earth asteroid (99942) Apophis to Earth in 2029 will provide a unique opportunity to examine how the physical properties of the asteroid could be changed due to the Earth's gravitational perturbation. As a result, the Republic of Korea is planning a rendezvous mission to Apophis. Aims. Our aim was to use photometric data from the apparitions in 2020-2021 to refine the shape model and spin state of Apophis. Methods. Using thirty-six 1 to 2-m class ground-based telescopes and the Transiting Exoplanet Survey Satellite, we performed a photometric observation campaign throughout the 2020-2021 apparition. The convex shape model and spin state were refined using the light-curve inversion method. Results. According to our best-fit model, Apophis is rotating in a short axis mode with rotation and precession periods of 264.178 hours and 27.38547 hours, respectively. The angular momentum vector orientation of Apophis was found as (275^\circ, -85^\circ) in the ecliptic coordinate system. The ratio of the dynamic moments of inertia of this asteroid was fitted to Ia:Ib:Ic=0.64:0.97:1I_a:I_b:I_c=0.64:0.97:1, which corresponds to an elongated prolate ellipsoid. These findings regarding the spin state and shape model could be used to not only design the space mission scenario but also investigate the impact of the Earth's tidal force during close encounters.Comment: 14 pages, 5 figures; Accepted for publication on Astronomy & Astrophysic

    Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand

    Get PDF
    Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Reflections on the use of visual methods in a qualitative study of domestic kitchen practices

    Get PDF
    Understanding everyday social practices is challenging as many are mundane and taken for granted and therefore difficult to articulate or recall. This paper reflects on the challenges encountered in a qualitative study underpinned by current theories of practice that incorporated visual methods. Using this approach meant everyone in a sample of 20 household cases, from children through to adults in their 80s, could show and tell their own stories about domestic kitchen practices. Households co-produced visual data with the research team through kitchen tours, photography, diaries/scrapbooks, informal interviews and recording video footage. The visual data complemented and elaborated on the non-visual data and contradictions could be thoroughly interrogated. A significant challenge was handling the substantial insight revealed about a household through visual methods, in terms of household anonymity. The paper reflects on the challenges of a visual approach and the contribution it can make in an applied sociological study

    Demersal Fish Assemblages and Spatial Diversity Patterns in the Arctic-Atlantic Transition Zone in the Barents Sea

    Get PDF
    Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity “hotspots”; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian)

    Refinement of the convex shape model and tumbling spin state of (99942) Apophis using the 2020-2021 apparition data

    Get PDF
    Context. The close approach of the near-Earth asteroid (99942) Apophis to Earth in 2029 will provide a unique opportunity to examine how the physical properties of the asteroid could be changed due to the Eartha's gravitational perturbation. As a result, the Republic of Korea is planning a rendezvous mission to Apophis. Aims. Our aim was to use photometric data from the apparitions in 2020 2021 to refine the shape model and spin state of Apophis. Methods. Using thirty-six 1-to 2-meter-class ground-based telescopes and the Transiting Exoplanet Survey Satellite, we carried out a photometric observation campaign throughout the 2020 2021 apparition. The convex shape model and spin state were refined using the light-curve inversion method. Results. According to our best-fit model, Apophis is rotating in a short-axis mode with rotation and precession periods of 264.178 h and 27.38547 h, respectively. The angular momentum vector orientation of Apophis was found to be (275, 85) in the ecliptic coordinate system. The ratio of the dynamic moments of inertia of this asteroid was fitted to Iaa:a Iba:a Ica =a 0.64a:a 0.97a:a 1, which corresponds to an elongated prolate ellipsoid. These findings regarding the spin state and shape model can be used to both design the space mission scenario and investigate the impact of the Eartha's tidal force during close encounters
    corecore