34 research outputs found

    Thermochemical characterisation of various biomass feedstock and bio-oil generated by fast pyrolysis

    Get PDF
    The projected decline in fossil fuel availability, environmental concerns, and security of supply attract increased interest in renewable energy derived from biomass. Fast pyrolysis is a possible thermochemical conversion route for the production of bio-oil, with promising advantages. The purpose of the experiments reported in this thesis was to extend our understanding of the fast pyrolysis process for straw, perennial grasses and hardwoods, and the implications of selective pyrolysis, crop harvest and storage on the thermal decomposition products. To this end, characterisation and laboratory-scale fast pyrolysis were conducted on the available feedstocks, and their products were compared. The variation in light and medium volatile decomposition products was investigated at different pyrolysis temperatures and heating rates, and a comparison of fast and slow pyrolysis products was conducted. Feedstocks from different harvests, storage durations and locations were characterised and compared in terms of their fuel and chemical properties. A range of analytical (e.g. Py-GC-MS and TGA) and processing equipment (0.3 kg/h and 1.0 kg/h fast pyrolysis reactors and 0.15 kg slow pyrolysis reactor) was used. Findings show that the high bio-oil and char heating value, and low water content of willow short rotation coppice (SRC) make this crop attractive for fast pyrolysis processing compared to the other investigated feedstocks in this project. From the analytical sequential investigation of willow SRC, it was found that the volatile product distribution can be tailored to achieve a better final product, by a variation of the heating rate and temperature. Time of harvest was most influential on the fuel properties of miscanthus; overall the late harvest produced the best fuel properties (high HHV, low moisture content, high volatile content, low ash content), and storage of the feedstock reduced the moisture and acid content

    Influence of pre-treatment on grass pyrolysis for high value products

    Get PDF
    Pyrolysis of biomass is a process which yields high quality, clean, and green products like bio-oil and bio-char. Bio-oil has a wide range of applications and also includes liquid fuels and raw chemical products. Therefore, it will be attractive to tailor the bio-oil properties to improve the yields of specific compounds that are economically interesting. In particular, pyrolytic sugar can be used for fermentation while phenolic compounds have an array of industrial applications such as adhesives; moreover, they can substitute petroleum-based phenols. However, it is difficult to achieve high yields of specific chemicals in the bio-oil without adequate biomass pre-treatments. Please click Additional Files below to see the full abstract

    Cellulose valorization in biorefinery: integration of fast pyrolysis and fermentation for building blocks production

    Get PDF
    A combination of thermochemical and biological conversion of cellulosic materials is a promising alternative for the production of biofuels and building blocks in an integrated biorefinery. Indeed, enzymatic depolymerization is selective but slow and expensive. It would be of interest to associate thermochemical conversion for a fast depolymerization of biomass with biochemical conversion for a selective conversion of depolymerized liquid streams. In this work, cellulose is pyrolyzed to produce sugars that can be used as substrate for a fermentation process. This work is the result of a scientific collaboration between ICFAR (London, Canada) and CNRS (Nancy, France). Pyrolysis was performed in a fluidized bed reactor at 475á”’C with a bio-oil yield of 73.4 wt.% (Figure 1). Different fractions of bio-oil were recovered with a set of 5 condensers. Levoglucosan and total sugars were quantified by GC-FID-MS and phenol/sulphuric acid method respectively. The maximum yields of levoglucosan (43.7 %) and total sugars (80.4 %) were found in the first condenser that was kept at 70á”’C. Due to the non-fermentable condition of levoglucosan, all the oil fractions, as well as a mixture of them, were hydrolyzed to obtain fermentable glucose. The different bio-oil fractions and a mixture of all fractions were used as substrate in a fermentation reactor to produce acetone, butanol and ethanol (ABE). The talk will present the mass yields obtained for the integrated process combining pyrolysis, hydrolysis and fermentation (figure 2). The microorganisms were not able to grow in the mixture of all fractions. On the contrary, fractions from condenser 1 and 2 lead to normal bacterial growth and fermentation products pattern. Maximum yields (per gram of oil) of acetone=4.6 %, butanol=13.2 % and ethanol=0.1 % were found for the bio-oil collected in the first condenser. These results put in evidence the importance of pyrolysis with staged condensation as an entry for fermentation processes. The methodology proposed in this work could be applied to other biochemical conversion of bio-oils to produce higher added-value products. Please click Additional Files below to see the full abstract

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
    corecore