262 research outputs found

    Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo

    Get PDF
    Forest carbon stocks in rapidly developing tropical regions are highly heterogeneous, which challenges efforts to develop spatially-explicit conservation actions. In addition to field-based biodiversity information, mapping of carbon stocks can greatly accelerate the identification, protection and recovery of forests deemed to be of high conservation value (HCV). We combined airborne Light Detection and Ranging (LiDAR) with satellite imaging and other geospatial data to map forest aboveground carbon density at 30m (0.09ha) resolution throughout the Malaysian state of Sabah on the island of Borneo. We used the mapping results to assess how carbon stocks vary spatially based on forest use, deforestation, regrowth, and current forest protections. We found that unlogged, intact forests contain aboveground carbon densities averaging over 200MgCha−1, with peaks of 500MgCha−1. Critically, more than 40% of the highest carbon stock forests were discovered outside of areas designated for maximum protection. Previously logged forests have suppressed, but still high, carbon densities of 60–140MgCha−1. Our mapped distributions of forest carbon stock suggest that the state of Sabah could double its total aboveground carbon storage if previously logged forests are allowed to recover in the future. Our results guide ongoing efforts to identify HCV forests and to determine new areas for forest protection in Borneo

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    Inhalation of β2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract

    Get PDF
    BACKGROUND: Nontypable Haemophilus influenzae (NTHi) is a common bacterial pathogen causing human respiratory tract infections under permissive conditions such as chronic obstructive pulmonary disease. Inhalation of β2-receptor agonists is a widely used treatment in patients with chronic obstructive pulmonary disease. The aim of this study was to determine the effect of inhalation of β2 agonists on the host immune response to respiratory tract infection with NTHi. METHODS: Mouse alveolar macrophages were stimulated in vitro with NTHi in the presence or absence of the β2 receptor agonists salmeterol or salbutamol. In addition, mice received salmeterol or salbutamol by inhalation and were intranasally infected with NTHi. End points were pulmonary inflammation and bacterial loads. RESULTS: Both salmeterol and salbutamol inhibited NTHi induced tumor necrosis factor-α (TNFα) release by mouse alveolar macrophages in vitro by a β receptor dependent mechanism. In line, inhalation of either salmeterol or salbutamol was associated with a reduced early TNFα production in lungs of mice infected intranasally with NTHi, an effect that was reversed by concurrent treatment with the β blocker propranolol. The clearance of NTHi from the lungs was impaired in mice treated with salmeterol or salbutamol, an adverse effect that was prevented by propranolol and independent of the reduction in TNFα. CONCLUSION: These data suggest that inhalation of salmeterol or salbutamol may negatively influence an effective clearance of NTHi from the airways

    The only African wild tobacco, Nicotiana africana: Alkaloid content and the effect of herbivory

    Get PDF
    Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 µg/g dry mass) followed by anabasine (4.9 µg/g) and nicotine (0.6 µg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory

    Qualitatively and quantitatively similar effects of active and passive maternal tobacco smoke exposure on in utero mutagenesis at the HPRT locus

    Get PDF
    BACKGROUND: Induced mutagenesis in utero is likely to have life-long repercussions for the exposed fetus, affecting survival, birth weight and susceptibility to both childhood and adult-onset diseases, such as cancer. In the general population, such exposures are likely to be a consequence of the lifestyle choices of the parents, with exposure to tobacco smoke one of the most pervasive and easily documented. Previous studies attempting to establish a direct link between active smoking and levels of somatic mutation have largely discounted the effects of passive or secondary exposure, and have produced contradictory results. METHODS: Data from three studies of possible smoking effects on in utero mutagenesis at the HPRT locus were compiled and reanalyzed, alone and in combination. Where possible, passive exposure to environmental tobacco smoke was considered as a separate category of exposure, rather than being included in the non-smoking controls. Molecular spectra from these studies were reanalyzed after adjustment for reported mutation frequencies from the individual studies and the entire data set. RESULTS: A series of related studies on mutation at the X-linked HPRT locus in human newborn cord blood samples has led to the novel conclusion that only passive maternal exposure to tobacco mutagens has a significant effect on the developing baby. We performed a pooled analysis of the complete data from these studies, at the levels of both induced mutation frequency and the resulting mutational spectrum. CONCLUSION: Our analysis reveals a more commonsensical, yet no less cautionary result: both active maternal smoking and secondary maternal exposure produce quantitatively and qualitatively indistinguishable increases in fetal HPRT mutation. Further, it appears that this effect is not perceptibly ameliorated if the mother adjusts her behavior (i.e. stops smoking) when pregnancy is confirmed, although this conclusion may also be affected by continued passive exposure

    Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    Get PDF
    Background: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phageresistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD 50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophag

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems

    Effectiveness of Protected Areas in Maintaining Plant Production

    Get PDF
    Given the central importance of protected area systems in local, regional and global conservation strategies, it is vital that there is a good understanding of their effectiveness in maintaining ecological functioning. Here, we provide, to our knowledge, the first such global analysis, focusing on plant production, a “supporting” ecosystem function necessary for multiple other ecosystem services. We use data on the normalized difference vegetation index (NDVI) as a measure of variation in plant production in the core, boundary and surroundings of more than 1000 large protected areas over a 25 year period. Forested protected areas were higher (or similar), and those non-forested were lower (or similar), in NDVI than their surrounding areas, and these differences have been sustained. The differences from surrounding areas have increased for evergreen broadleaf forests and barren grounds, decreased for grasslands, and remained similar for deciduous forests, woodlands, and shrublands, reflecting different pressures on those surroundings. These results are consistent with protected areas being effective both in the representation and maintenance of plant production. However, widespread overall increases in NDVI during the study period suggest that plant production within the core of non-forested protected areas has become higher than it was in the surroundings of those areas in 1982, highlighting that whilst the distinctiveness of protected areas from their surroundings has persisted the nature of that difference has changed

    Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    Get PDF
    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high δ15N values that might be indicative of meat consumption. Herbivory on plants with high δ15N values cannot be ruled out based on this method, however. Here we apply an approach using the δ15N values of individual amino acids from collagen that offsets the baseline δ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the δ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen δ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory
    corecore