5,087 research outputs found

    Does China Still Have A Labor Cost Advantage?

    Get PDF
    In recent years wages in China have been rising and the yuan has appreciated, potentially eroding China’s cost advantage in manufactures. This paper explores the evolution of China’s relative unit labor costs in manufacturing over 1998-2009. Between 1998 and 2003 China’s unit labor costs fell, but since 2003 they have increased both absolutely and relative to US unit labor costs. Much of the rise in China’s relative unit labor costs can be traced to a real appreciation of the yuan against the dollar. Despite the recent rise, China’s unit labor costs remain low relative to those in most other countries

    Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    Get PDF
    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine

    Fluctuation-induced interactions between dielectrics in general geometries

    Full text link
    We study thermal Casimir and quantum non-retarded Lifshitz interactions between dielectrics in general geometries. We map the calculation of the classical partition function onto a determinant which we discretize and evaluate with the help of Cholesky factorization. The quantum partition function is treated by path integral quantization of a set of interacting dipoles and reduces to a product of determinants. We compare the approximations of pairwise additivity and proximity force with our numerical methods. We propose a ``factorization approximation'' which gives rather good numerical results in the geometries that we study

    Developments in new aircraft tire tread materials

    Get PDF
    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock

    Separable states can be used to distribute entanglement

    Get PDF
    We show that no entanglement is necessary to distribute entanglement; that is, two distant particles can be entangled by sending a third particle that is never entangled with the other two. Similarly, two particles can become entangled by continuous interaction with a highly mixed mediating particle that never itself becomes entangled. We also consider analogous properties of completely positive maps, in which the composition of two separable maps can create entanglement.Comment: 4 pages, 2 figures. Slight modification

    Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors

    Full text link
    A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure

    Asymptotically Optimal Quantum Circuits for d-level Systems

    Full text link
    As a qubit is a two-level quantum system whose state space is spanned by |0>, |1>, so a qudit is a d-level quantum system whose state space is spanned by |0>,...,|d-1>. Quantum computation has stimulated much recent interest in algorithms factoring unitary evolutions of an n-qubit state space into component two-particle unitary evolutions. In the absence of symmetry, Shende, Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa (VMS) use the QR matrix factorization and Gray codes in an optimal order construction involving two-particle evolutions. In this work, we note that Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a generic (symmetry-less) n-qudit evolution. However, the VMS result applied to virtual-qubits only recovers optimal order in the case that d is a power of two. We further construct a QR decomposition for d-multi-level quantum logics, proving a sharp asymptotic of Theta(d^{2n}) two-qudit gates and thus closing the complexity question for all d-level systems (d finite.) Gray codes are not required, and the optimal Theta(d^{2n}) asymptotic also applies to gate libraries where two-qudit interactions are restricted by a choice of certain architectures.Comment: 18 pages, 5 figures (very detailed.) MatLab files for factoring qudit unitary into gates in MATLAB directory of source arxiv format. v2: minor change

    Magnetic trapping of ultracold neutrons

    Full text link
    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency downconverted to the visible and detected. Results are presented in which 500 +/- 155 neutrons are magnetically trapped in each loading cycle, consistent with theoretical predictions. The lifetime of the observed signal, 660 s +290/-170 s, is consistent with the neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review

    Off-diagonal disorder in the Anderson model of localization

    Full text link
    We examine the localization properties of the Anderson Hamiltonian with additional off-diagonal disorder using the transfer-matrix method and finite-size scaling. We compute the localization lengths and study the metal-insulator transition (MIT) as a function of diagonal disorder, as well as its energy dependence. Furthermore we investigate the different influence of odd and even system sizes on the localization properties in quasi one-dimensional systems. Applying the finite-size scaling approach in conjunction with a nonlinear fitting procedure yields the critical parameters of the MIT. In three dimensions, we find that the resulting critical exponent of the localization length agrees with the exponent for the Anderson model with pure diagonal disorder.Comment: 12 pages including 4 EPS figures, accepted for publication in phys. stat. sol. (b
    • …
    corecore