444 research outputs found

    Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos

    Get PDF
    Background The aetiology of recurrent miscarriage (RM) remains largely unexplained. Women with RM have a shorter time to pregnancy interval than normally fertile women, which may be due to more frequent implantation of non-viable embryos. We hypothesized that human endometrial stromal cells (H-EnSCs) of women with RM discriminate less effectively between high-and low-quality human embryos and migrate more readily towards trophoblast spheroids than H-EnSCs of normally fertile women. Methodology/Principal Findings Monolayers of decidualized H-EnSCs were generated from endometrial biopsies of 6 women with RM and 6 fertile controls. Cell-free migration zones were created and the effect of the presence of a high-quality (day 5 blastocyst, n = 13), a low-quality (day 5 blastocyst with three pronuclei or underdeveloped embryo, n = 12) or AC-1M88 trophoblast cell line spheroid on H-ESC migratory activity was analyzed after 18 hours. In the absence of a spheroid or embryo, migration of H-EnSCs from fertile or RM women was similar. In the presence of a low-quality embryo in the zone, the migration of H-EnSCs of control women was inhibited compared to the basal migration in the absence of an embryo (P<0.05) and compared to the migration in the presence of high-quality embryo (p<0.01). Interestingly, the migratory response H-EnSCs of women with RM did not differ between high- and low-quality embryos. Furthermore, in the presence of a spheroid their migration was enhanced compared to the H-EnSCs of controls (p<0.001). Conclusions H-EnSCs of fertile women discriminate between high- and low-quality embryos whereas H-EnSCs of women with RM fail to do so. H-EnSCs of RM women have a higher migratory response to trophoblast spheroids. Future studies will focus on the mechanisms by which low-quality embryos inhibit the migration of H-EnSCs and how this is deregulated in women with RM

    Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds

    Full text link
    The synthesis, infra-red, Raman and NMR spectra and crystal structure of 2, 4, 4- trimethyl-4, 5- dihydro-3H-benzo[b] [1, 4] diazepin-1-ium tetrachlorocadmate, [C12H17N2]2CdCl4 and benzene-1,2-diaminium decachlorotricadmate(II) [C6H10N2]2Cd3Cl10 are reported. The [C12H17N2]2CdCl4 compound crystallizes in the triclinic system (P-1 space group) with Z = 2 and the following unit cell dimensions: a = 9.6653(8) angstrom, b = 9.9081(9) angstrom, c = 15.3737(2) angstrom, alpha = 79.486(1)degrees, beta = 88.610(8)degrees and gamma = 77.550(7)degrees. The structure was solved by using 4439 independent reflections down to R value of 0.029. In crystal structure, the tetrachlorocadmiate anion is connected to two organic cations through N-H...Cl hydrogen bonds and Van Der Waals interaction as to build cation-anion-cation cohesion. The [C6H10N2]2Cd3Cl10 crystallizes in the triclinic system (P-1 space group). The unit cell dimensions are a = 6.826 (5)angstrom, b = 9.861 (7)angstrom, c = 10.344 (3)angstrom, alpha = 103.50 (1)degrees, beta = 96.34 (4)degrees and gamma = 109.45 (3)degrees, Z=2. The final R value is 0.053 (Rw=0.128). Its crystal structure consists of organic cations and polymeric chains of [Cd3Cl10]4- anions running along the [011] direction, In The [C6H10N2]2Cd3Cl10 compounds hydrogen bond interactions between the inorganic chains and the organic cations, contribute to the crystal packing. PACS Codes: 61.10.Nz, 61.18.Fs, 78.30.-jComment: 19 pages, 10 figure

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    A Multispecialty Evaluation of Thiel Cadavers for Surgical Training

    Get PDF
    Background: Changes in UK legislation allow for surgical procedures to be performed on cadavers. The aim of this study was to assess Thiel cadavers as high-fidelity simulators and to examine their suitability for surgical training. Methods: Surgeons from various specialties were invited to attend a 1 day dissection workshop using Thiel cadavers. The surgeons completed a baseline questionnaire on cadaveric simulation. At the end of the workshop, they completed a similar questionnaire based on their experience with Thiel cadavers. Comparing the answers in the pre- and post-workshop questionnaires assessed whether using Thiel cadavers had changed the surgeons’ opinions of cadaveric simulation. Results: According to the 27 participants, simulation is important for surgical training and a full-procedure model is beneficial for all levels of training. Currently, there is dissatisfaction with existing models and a need for high-fidelity alternatives. After the workshop, surgeons concluded that Thiel cadavers are suitable for surgical simulation (p = 0.015). Thiel were found to be realistic (p < 0.001) to have reduced odour (p = 0.002) and be more cost-effective (p = 0.003). Ethical constraints were considered to be small. Conclusion: Thiel cadavers are suitable for training in most surgical specialties

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Understanding single-station ground motion variability and uncertainty (sigma) – Lessons learnt from EUROSEISTEST

    Get PDF
    Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30-50%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φS2S (20-30%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset’s advantages is the large number of recordings per station (9-90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φSS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φSS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φSS, provided that: 1. the magnitude scaling errors are accommodated by the event terms; 2. there are no distance scaling errors (use of a regionally applicable model). Site terms (φS2S) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e. for hard rock

    First evidence for Wollemi Pine-type pollen (Dilwynites: Araucariaceae) in South America

    Get PDF
    We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America.Mike Macphail, Raymond J. Carpenter, Ari Iglesias, Peter Wil

    The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity

    Get PDF
    Climate change is expected to exacerbate heat stress at the workplace in temperate regions, such as Slovenia. It is therefore of paramount importance to study present and future summer heat conditions and analyze the impact of heat on workers. A set of climate indices based on summer mean (Tmean) and maximum (Tmax) air temperatures, such as the number of hot days (HD: Tmax above 30 °C), and Wet Bulb Globe Temperature (WBGT) were used to account for heat conditions in Slovenia at six locations in the period 1981–2010. Observed trends (1961–2011) of Tmean and Tmax in July were positive, being larger in the eastern part of the country. Climate change projections showed an increase up to 4.5 °C for mean temperature and 35 days for HD by the end of the twenty-first century under the high emission scenario. The increase in WBGT was smaller, although sufficiently high to increase the frequency of days with a high risk of heat stress up to an average of a third of the summer days. A case study performed at a Slovenian automobile parts manufacturing plant revealed non-optimal working conditions during summer 2016 (WBGT mainly between 20 and 25 °C). A survey conducted on 400 workers revealed that 96% perceived the temperature conditions as unsuitable, and 56% experienced headaches and fatigue. Given these conditions and climate change projections, the escalating problem of heat is worrisome. The European Commission initiated a program of research within the Horizon 2020 program to develop a heat warning system for European workers and employers, which will incorporate case-specific solutions to mitigate heat stress.The work was supported by the European Union Horizon 2020 Research and Innovation Action (Project number 668786: HEATSHIELD)

    Evaporative evolution of a Na–Cl–NO(3)–K–Ca–SO(4)–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada

    Get PDF
    A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO(3), 5 mol % K, and less than 1 mol % each of SO(4), Ca, Mg, ∑CO(2)(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO(4 )solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases
    corecore