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Abstract Accelerometric data from the well-studied valley EUROSEISTEST are used to

investigate ground motion uncertainty and variability. We define a simple local ground

motion prediction equation (GMPE) and investigate changes in standard deviation (r) and
its components, the between-event variability (s) and within-event variability (u).
Improving seismological metadata significantly reduces s (30–50%), which in turn reduces

the total r. Improving site information reduces the systematic site-to-site variability, uS2S

(20–30%), in turn reducing u, and ultimately, r. Our values of standard deviations are

lower than global values from literature, and closer to path-specific than site-specific

values. However, our data have insufficient azimuthal coverage for single-path analysis.

Certain stations have higher ground-motion variability, possibly due to topography, basin

edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a

sufficient data selection criterion, however, one of the dataset’s advantages is the large

number of recordings per station (9–90) that yields good site term estimates. We examine

uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller

magnitudes, s decreases and uSS increases, possibly due to j and source-site trade-offs

& Olga-Joan Ktenidou
o.ktenidou@gre.ac.uk; olga.ktenidou@gmail.com

1 Department of Engineering Science, University of Greenwich, Medway Campus, Central Avenue,
Chatham Maritime, Kent ME4 4TB, UK

2 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Helmholtzstraße 6/7,
Building H 6, 14467 Potsdam, Germany

3 Laboratory of Soil Mechanics, Foundations, and Geotechnical Earthquake Engineering,
Department of Civil Engineering, Aristotle University of Thessaloniki, P.O. Box 424,
54124 Thessalonı́ki, Greece

4 Pacific Gas and Electric Company, 245 Market Street, San Francisco, CA 94105, USA

5 Institute for Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25,
14476 Potsdam-Golm, Germany

6 CEA Cadarache, 13108 St Paul lez Durance Cedex, France

7 ISTerre, Universite de Grenoble 1, CNRS, F-38041 Grenoble, France

123

Bull Earthquake Eng
DOI 10.1007/s10518-017-0098-6

http://orcid.org/0000-0001-5206-5699
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-017-0098-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-017-0098-6&amp;domain=pdf


Finally, we investigate the alternative approach of computing uSS using existing GMPEs

instead of creating an ad hoc local GMPE. This is important where data are insufficient to

create one, or when site-specific PSHA is performed. We show that global GMPEs may

still capture uSS, provided that: (1) the magnitude scaling errors are accommodated by the

event terms; (2) there are no distance scaling errors (use of a regionally applicable model).

Site terms (uS2S) computed by different global GMPEs (using different site-proxies) vary

significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly

constrained where they are sometimes most needed, i.e., for hard rock.

Keywords Ground motion � Variability � Uncertainty � Single station sigma � Site response

1 Introduction

Probabilistic Seismic Hazard Assessment (PSHA) has often been shown to be strongly

influenced by the uncertainty in strong ground motion estimation, especially at long return

periods, i.e., low annual rates of exceedance (e.g. Bommer and Abrahamson 2006). Ground

motion prediction is primarily done through the use of empirical relations usually called

Ground Motion Prediction Equations (GMPEs) and its variability, commonly referred to as

sigma, r, is broadly interpreted as aleatory variability, i.e., scatter attributed to the random

and complicated nature of the physical processes of the generation and propagation of

seismic waves in the earth’s interior. However, several studies (e.g. Anderson and Brune

1999) have suggested that such an interpretation is not accurate and that a fraction of sigma

should be treated as epistemic uncertainty, i.e., uncertainty that can be resolved with the

appropriate amount of knowledge and data. According to Anderson and Brune (1999), this

is because part of the variability in ground motion is due to path and site effects, which

may be repeated in subsequent earthquakes. Identifying and quantifying this epistemic

fraction could optimally lead to a decrease in r and hence to more realistic PSHA results.

This is of primary importance when designing ground motion for critical facilities such as

nuclear power plants and related infrastructure.

Accepting an epistemic fraction of r is equivalent to dropping the ergodic assumption

(Anderson and Brune 1999). In the ergodic approach, the lack of data in time is com-

pensated with data in space, and the spatial and temporal variability of ground motion are

considered equal. Hence, the expected variability of strong ground motion at a specific site

is assumed to be equal to the r of the GMPE that is adopted for that site. However, GMPEs

are rarely constrained by data from a specific site, fault, or even region, but are usually

constructed on the basis of more global sets of data from regions of similar (or not so

similar) seismotectonic characteristics. In fact, as strong ground motion data sets have

rapidly augmented during the past decades, it has been made possible to test the hypothesis

of ergodicity and it appears that variability of strong ground motion at a specific site,

commonly referred to as single-station sigma, rSS, is usually much lower that the vari-

ability of global GMPEs (e.g. Chen and Tsai 2002; Atkinson 2006; Morikawa et al. 2008;

Rodriguez-Marek et al. 2011, 2013). The same conclusion applies to a certain source-

station path, repetition of which may lead to even lower variability (Lin et al. 2011).

In the quest of sigma components, Joyner and Boore (1981) were the first to separate the

aleatory variability into inter- and intra-event variability. Nowadays, most scientists seem

to adopt the corresponding terms of ‘‘between-event’’ and ‘‘within-event’’ variability

suggested by Al Atik et al. (2010), which are illustrated in, what tends to be classic, Fig. 3
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of Strasser et al. (2009). The notation of Al Atik et al. (2010) is followed throughout this

paper, whenever possible.

Between-event variability is observed on events of the samemagnitude and style-of-faulting

and is attributed to differences in the source rupture process such as different stress-drop,

rupture velocity, slip velocity, etc. Within-event variability is practically the spatial variability

observed during a specific event between sites at the same distance from the source. This latter

component of r is attributed to phenomena pertinent to the deep geological structure and the

geotechnical characteristics of the sites, such as ground motion amplification, near-surface

attenuation, propagation effects and nonlinear site response. The between- and within-event

residuals are generally assumed to be uncorrelated and, thus, the total standard deviation is

computed as the square root of the sumof the squares of the between- andwithin-event standard

deviation, commonly referred to as tau (s) and phi (u), respectively.
In the present work, we choose to study a small region, that of the EUROSEISTEST in

Northern Greece, and work with a dataset that is as well constrained as possible with respect

to what is encountered in practice, in order to be able to better constrain epistemic uncer-

tainty and investigate the contribution of different parameters on the global and single-station

uncertainty. We initially create a simple GMPE to remove the mean from our data and

analyze residuals, aiming to investigate how we can decrease the components of global

uncertainty by improving source and site metadata. We then move to single-station com-

ponents of uncertainty. We compare our values to results found across literature and further

examine the behavior of different r components with period and number of recordings used.

We identify the sites with the highest variability, uSS, and discuss possible explanations. We

examine tendencies with magnitude, distance, and depth at different periods, as well as

possible effects of the azimuthal coverage of source-site paths around the examined sites.

Finally, we investigate an alternative approach towards computing uSS: the use of

existing predictive GMPEs in lieu of creating an ad hoc GMPE with local data. Up to now,

two approaches have been used in previous studies: either a local model is calibrated in

order to remove the mean and analyse residuals (this reflects most cases, e.g. Al Atik 2013;

Rodriguez-Marek et al. 2011), or a global model is adopted (Chen and Faccioli 2013). This

study shows that these approaches indeed yield comparable uSS. This is a test not per-

formed before, and important for cases where not enough data is available to create a local

model, or when site-specific PSHA is performed.

2 The site under study

To perform our study we chose to use the accelerometric data of the EUROSEISTEST, a

multidisciplinary European experimental site, which is located in the Mygdonia valley, at

about 30 km to NE of the city of Thessaloniki in Northern Greece (Fig. 1a). EURO-

SEISTEST is one of the longest running test sites of its kind, being in operation since 1993.

It consists of a three dimensional strong motion array of 16 surface and 6 downhole

stations (Fig. 1b, c). The surface stations form a cross-shape array, expanding along the

two axis of the elongated Mygdonia valley. At the center of the surface array, there is a

group of five borehole stations installed at various depths down to the bedrock, at circa

200 m depth. The span of the valley in the NNW-SSE direction is about 5 km with site

conditions ranging from soft sediments to hard rock, with average shear-wave velocities

down to 30 m (Vs30) from 190 to 1840 m/s (site classes spanning from A to C/D,

according to EC8; CEN 2003).
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The primary reason for selecting the EUROSEISTEST area is the good existing

knowledge of site conditions, which is a result of more than 20 years of geophysical,

geotechnical, and site response studies (e.g. Jongmans et al. 1998; Raptakis et al.

1998, 2000; Kudo et al. 2002; Manakou et al. 2010). Another advantage is that this dataset

can be well controlled in terms of the quality of its seismological metadata, as it refers to a

relatively small, well-studied area and to events after 2003, i.e., after the modernization

and densification of permanent monitoring networks in Greece. Metadata is of fundamental

importance in our study, as we are dealing mostly with small distances from the source and

small magnitude events (Fig. 2).

3 Data and metadata

3.1 Accelerometric data

Accelerometric data used in our analysis correspond to the ‘filtered’ data set of the

EUROSEISTEST database (http://euroseisdb.civil.auth.gr; last accessed February 2016;

Pitilakis et al. 2013). These data have been filtered using an acausal, 4th-order band-pass

Butterworth filter and a threshold value of 3 for the signal-plus-noise to noise ratio. Starting

from more than 1100 recordings available, we created a subset of 691 recordings from 74

events, with magnitudes from M2.0-M5.6 and distances from 5 to 220 km. The selection of

these recordings was based on several criteria that we set. We neglected events prior to

2003 as most data corresponding to them were recorded by low-resolution instruments, and

parts of the array were not yet in operation (i.e., the E–W branch). We did not include

(a) (b) 

(c) 

PRO STE 

Euroseistest

A: hard rock:  Vs30 > 800 m/s
B: stiff soil:     800 > Vs30 > 360 m/s
C: soil:           360 > Vs30 > 180 m/s

Fig. 1 a Regional map showing the location of EUROSEISTEST and event epicentres. b Cross-section of
the basin showing the two boreholes (adapted from Pitilakis et al. 1999). c Layout of the array. Stations are
colour-coded according to EC8 classification (classes A, B, C) (adapted from Pitilakis et al. 1999)
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events at distances longer than 220 km, or recordings that do not have both horizontal

components. We rejected events coming from the southern Aegean subduction regime,

thus kept focal depths to a maximum of 25 km. The recordings that passed these criteria

are all the data points shown in Fig. 2. But most importantly, given the nature of this study,

we rejected all events that were not recorded by at least 3 stations, because these could lead

to inadequate resolution of the event terms and hence inflated values of s. These rejected

recordings are marked in the figure in red.

The lowest usable frequencies in the recordings of the dataset range from 0.1 to 3 Hz

(decreasing with magnitude) and the highest usable frequencies range from 10 to 50 Hz.

Corner frequencies, and especially the low-cut corners, vary significantly among the dif-

ferent recordings and this should be kept in mind when single station analysis results are

interpreted at discrete periods.

To obtain the peak values of ground motion required in the subsequent step of the

regression analysis, we computed the ‘‘average’’ horizontal component of each recording

defined by the median rotated direction RotD50 (Boore 2010). These ‘‘average’’ compo-

nents were then used to compute the Peak Ground Acceleration (PGA) and Spectral

Acceleration (SA) at various periods from 0.01 to 2 s.

3.2 Source metadata

The components of ground motion variability in the EUROSEISTEST area were evaluated

using two different sets of seismological metadata, which we will refer to as the ‘‘initial’’

and ‘‘refined’’ set from now on.

In the initial set, locations and magnitudes of the examined earthquakes were taken from

the monthly seismicity bulletins of the Department of Geophysics of the Aristotle

Epicentral distance (km) 
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Nrec ≥ 3 
Nrec < 3 

Fig. 2 Distribution of moment magnitude and epicentral distance for the final dataset for this study, colour-
coded by the number of recordings per event. Events with less than 3 recordings (red markers) were rejected
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University of Thessaloniki (THE, http://seismology.geo.auth.gr; last accessed February

2016), complemented, wherever THE did not provide a solution, by the revised relative

catalog of the National Observatory of Athens (NOA, http://www.gein.noa.gr, http://bbnet.

gein.noa.gr; last accessed February 2016). Until 2008, the two Institutes were using dif-

ferent data sets, with THE having more stations around our study region. In 2008, NOA

and THE, joined the Hellenic Uniform Seismological Network (HUSN) and since then

they share the same dataset, although phase picking and routine earthquake location on a

24/7 basis is performed independently by the two Institutes.

In the refined set, we adopted the relocated foci of Galanis (2010), available for events

up to December 2005, and those of Ktenidou and Roumelioti (2014) for events that

occurred in the period 2006–2013 at distances less than 30 km from the center of the

EUROSEISTEST array. For more distant events in the same period (2006–2013), we kept

the routine solutions of THE. Magnitude values in the refined dataset are as in Ktenidou

and Roumelioti (2014), as well, i.e., homogenized and re-estimated when Mw values were

undefined or uncertain. For more details on the magnitude estimation problems in the area

and their re-assessment, the reader is referred to the pertinent bibliographic source.

3.3 Site metadata

In Fig. 3a we show the distribution of recordings per station for the final dataset used in the

study (i.e., after applying all selection criteria mentioned in section ‘Accelerometric data’).

Another of the dataset’s advantages is the large number of recordings per station (ranging

from 9 to 90, with an average of about 33 recordings per site). In typical global datasets

one cannot expect such well-recorded sites and thus cannot place such good constraints on

site term estimates, as this study will. We note here that the large range of recordings per

station is due to several factors. On the one hand, some stations were placed later than

others. On the other hand, downhole stations have experienced several malfunction issues,

mostly associated with moisture getting into the underground equipment. These problems

affect the quality of the recorded data and can set stations out of operation from time to

time. This is directly reflected in the smaller number of recording at downhole stations

compared to the surface station at TST.

In Fig. 3b we show the distribution of Vs30 values per station. We assigned a Vs30 value to

each recording site after having examined all the available geological, geotechnical and geo-

physical information provided in theEUROSEISTESTwebportal (http://euroseisdb.civil.auth.

gr; last accessed February 2016). In Fig. 3a, the dashed lines indicate limiting Vs30 values for

EC8 site classification. We note that we have adapted the definition of Vs30 to downhole

stations, for which we compute it over the first 30 m directly under the buried station. There is

overall a satisfactory diversity in soil categories ranging fromquite soft soils at the center of the

valley (EC8 class C, e.g. stations TST_000, GRA, FRM) to hard rock at the edges and at the

deepest downhole station (EC8 class A, stations PRO_033 and TST_196).

4 Theoretical background on breaking down sigma

As mentioned earlier, the study of ground motion variability requires a median ground-

motion prediction model (GMPE) that will be used as a reference. To describe the error

term in the GMPE, we adopted a mixed (fixed and random) effects model as suggested by

Abrahamson and Youngs (1992). The model can be described by the general form:
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yes ¼ f X; hð Þ þ dBe þ dWes ð1Þ

where yes is the natural logarithm of the observed ground motion parameter, f(X, h) is the
median ground motion model, V is the vector of predictor variables of the model (e.g.

earthquake magnitude,M, closest distance to ruptured area, Rrup, etc.) and h is the vector of
model coefficients; dBe is the random effect of the eth event representing between-event

(a)

(b)

Fig. 3 a Vs30 values for all stations in the array. Dashed lines indicate the EC8 classification into classes A,
B and C. b Number of recordings per station
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variations and dWes is the within-event residual, which corresponds to the difference

between an individual observation of an event e at a station s and the event-corrected

median model estimate.

Residuals dBe and dWes are zero-mean, independent and random variables with normal

distributions and standard deviations s and u, respectively. These two sets of residuals,

when added, form the total residuals, Des, of a GMPE:

Des ¼ dBe þ dWes ð2Þ

The within-event residuals can be broken down to:

dWes ¼ dS2Ss þ dWSes ð3Þ

where given multiple recordings of ground motion at a specific site s, dS2SS is the sys-

tematic deviation of the observed amplification at this site from the empirically predicted

median amplification that could be attributed, for example, to site effects. Then, dWSes is

the remaining within-event residual at site s from event e, i.e., the part of the residual that

does not appear in a systematic manner. The standard deviations of dS2SS and dWSes are

denoted by uS2S and uSS, respectively. This latter term, uSS, is what is commonly referred

to as single-station phi and is used to compute the single-station sigma (rSS), i.e., the
aleatory variability of the ground motion model at a single site under the partially non-

ergodic assumption. The standard deviations of Eq. (3) and the single-station sigma con-

stitute the parameters to be primarily investigated in the present study. It is important to

note that partially (single-station) or fully (single-path) non-ergodic standard deviations

(phis) should not generally be used unless there is sufficient data to estimate—either

empirically, theoretically, or numerically—the site response. This is because uS2S can only

be dropped from the aleatory uncertainty of the global GMPE if the error of the site

response calculations is added to the epistemic part of the uncertainty within the PSHA

framework. Furthermore, this causes the mean of the global GMPE to change, so that the

non-ergodic sigmas should be used with an ad-hoc, site- or path-specific GMPE.

5 Study of ground motion uncertainty and variability

5.1 Single-station standard deviations

In the first part of our analysis we aimed to investigate how we can decrease the com-

ponents of global uncertainty by improving source and site data. We started with the

computation of the prediction model using a simple functional form, which included

quadratic scaling and magnitude-dependent geometric spreading, as per Eq. 4:

f ¼ b1M þ b2M
2 þ b3 þ b4 M � 4ð Þð Þ ln Rrup þ 10

� �
þ b5Rrup þ b6Sþ b7 ð4Þ

where f is the natural logarithm of the spectral acceleration, Rrup is the closest distance to

the ruptured surface assumed to be equal to the hypocentral distance, Rhyp, S is the site

effect term and bi the coefficients to be determined by the regression analysis. The goal of

this model is not to be used outside this study for prediction purposes, but to capture the

mean of our data and allow us to compute well-balanced residuals for studying standard

deviation.

For our first set of regressions, we assumed complete lack of knowledge as to the

geotechnical characteristics of the recording sites, (i.e., S = 0 in Eq. 4) whereas magnitude
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and distance values were defined based on available seismicity bulletins as described in the

‘‘Source Metadata’’ section (‘initial’ set of metadata). Resulting values for the different

components of variability at PGA and at 1 Hz are plotted in the left part of Fig. 4, at the

first two columns of data points. In the second column of data points on the same plot, we

show the corresponding results after the use of the ‘refined’ set of metadata, i.e., the

relocated epicenters and magnitude re-assessments. At PGA, the value of s drops from

about 0.43–0.29, thus decreasing by more than 30%. The decrease of s is even more

significant at the much lower frequency of 1 Hz, reaching 50%. This eventually leads to a

decrease in the total variability, r, while uS2S and u are practically stable. This implies that

the decrease in r is entirely due to the decrease in s. We thus find that having good quality

seismological metadata (magnitude and location) can be very important in reducing

uncertainty. In this dataset, differences between the initial and refined metadata are 0.1–0.7

in magnitude, up to 4 km in epicentral and up to 10 km in hypocentral distance. A sen-

sitivity check showed that improving magnitude accuracy for this dataset is more important

than improving location metadata.

Our second goal was to reduce uncertainty related to the site metadata, so we sought to

simulate a gradual improvement in site information, and expected it to primarily affect the

u component of the total uncertainty. To account for differences in sites, we initially

introduced a switch to differentiate between soil and rock. This is roughly the actual state

of practice in Greece, where switches are implemented based on soil classification (e.g.

Skarlatoudis et al. 2003, 2004). In the middle panel (three columns) of Fig. 4, this took us

from the first to the second column of data points, with uS2S, i.e., the systematic site-to-site

Fig. 4 Left two columns the decrease of s (and hence of r) with the improvement of source parameter
knowledge (for the ergodic case).Middle three columns the decrease of uS2S (and hence of u and r) with the
improvement of site parameter knowledge (for the ergodic case, using the relocated source metadata). Right
column the passing from ergodic to partially non-ergodic values in the site-specific analysis context. All
values are in natural log and are shown for PGA
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variability, decreasing by 10% for PGA. Next, we replaced the soil/rock switch by the

actual measured value of Vs30, which is the typical way of accounting for site response in

current GMPEs. This brought about an additional decrease of uS2S by approximate 10%

more for PGA, which in turn led to a reduction in u and r. For longer periods, the overall
improvement was larger, of the order of 30%. At these periods we observed that while uS2S

decreases, s somewhat increases. This is most likely because the two quantities are anti-

correlated, and in our dataset -as in most- it is inevitable to have some correlation between

parameters, as all events are not recorded at all distances.

Examples of the breaking-down of the r components are illustrated in Figs. 5 and 6. In

Fig. 5 we plot the computed values of the between-event residuals, dBe, in relation to

earthquake magnitude (top panel), as well as the computation of their standard deviation, s
(bottom panel). dBe values are not correlated with magnitude, thus verifying that the

magnitude scaling of our GMPE describes the center of our data well. Figure 6a shows the

within-event, dWes, components and their standard deviations. For each station, we have

computed the mean of the dWes and thus estimated the systematic, site-specific terms,

dS2S, whose standard deviation gives us uS2S (Fig. 6b). Correcting each station’s dWes

with the site term, dS2S, we then have the site-corrected within-event residuals, or dWSes

(Fig. 6c). Figure 6d shows that these residuals are not correlated to distance, indicating that

the distance scaling in our GMPE describes the center of the data satisfactorily. The

standard deviation of each station’s dWSes gives us that site’s single-station variability, or

uSS,S (Fig. 6e). We verify that uSS,S and dS2S,s are not correlated to Vs30 (Fig. 6e, f) or the

number of events each station recorded (Fig. 6g).

After optimizing the global standard deviations, we proceeded to examine the single-

station uncertainty. In order to use non-ergodic sigma values, site-specific estimates must

be made for the site terms, using either empirical or numerical methods. With that in mind,

we show the values computed for single-station u and r, namely uSS and rSS, in the last

column of data points in Fig. 4 (panel on the right).

In Fig. 7 we compare the values we computed at PGA with corresponding estimates

retrieved from the literature (Chen and Tsai 2002; Atkinson 2006; Boore and Atkinson

2008; Chiou and Youngs 2008; Morikawa et al. 2008; Anderson and Uchiyama 2011; Lin

et al. 2011; Ornthammarath et al. 2011; Rodriguez-Marek et al. 2011, 2013; Al Atik 2013;

Chen and Faccioli 2013; Luzi et al. 2014) and found them to be lower than uSS, s and r
values reported elsewhere. Especially for rSS, the values that we obtain (of the order of 0.4

in natural logarithms) are closer to values reported for single-path cases, rSP (e.g. Atkinson
2006; Morikawa et al. 2008; Lin et al. 2011).

Fig. 5 Example of the correlation of between-event residuals, dBe, with magnitude (top) and the estimation
of s (bottom). Results are for PGA, using the relocated source metadata and Vs30 as a site proxy
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 6 The break-up of a within-event residuals dWes, into b the systematic site term dS2S, and c site-
corrected within-event residuals dWSes, and of the estimation of u, uS2S, and uSS, respectively, d correlation
of dWSes with distance, e correlation of uSS,S with Vs30 at the stations, f correlation of dS2S,S and uSS,S with
Vs30, and g correlation of uSS,S with the number of recordings per site. Results are for PGA using the
relocated source metadata and Vs30 as a site proxy
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5.2 Single station standard deviations: stability, dependencies and site
variability

In the previous section we presented results for two selected periods, PGA and 1 s. Fig-

ure 8a–d shows the dependence of global and single-station uncertainty components with

period, from 0.01 s up to 2 s. Looking at the number of recordings (Fig. 8e) at longer

periods, our dataset decreases. This is because we only used data within its range of

validity and we did not compute spectral accelerations outside the filtering frequencies, i.e.,

we had no data below the lowest usable frequency. Compared to the data we used at high

frequencies, at 1 s we have already lost roughly half our data in terms of recordings and

bFig. 7 Comparison of the results of this study (white bars) with corresponding results from published
studies. All values pertain to PGA and are natural logarithms

(a) (b)

(c) (d)

(e)

Fig. 8 a–d Dependence of uncertainty components with period, e decrease of the number of recordings and
events with period
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events, and at 2 s we have lost over 2/3 of them. This is why we do not show any results for

periods longer than 2 s. The gradual increase in s (Fig. 8a) is often observed as periods

grow longer. It is reasonable given the decrease in the number of earthquakes we can use at

long periods. As is often observed, s and u are anti-correlated, and we see this in Fig. 8a,

where u decreases as s increases. Figure 8b shows the components of u; we observe a

spike in u and uS2S values around 0.7–0.8 s. These periods correspond to the resonant

period of some of the sites in this study, and the spikes indicate an increase in variability

due to site response at these resonances. Figure 8c shows the single-station values (dashed

lines) compared to total u and r values (solid lines). At PGA (roughly 0.01 s), the ratio of

rSS/r is near 80% and the ratio of uSS/u is near 70% (Fig. 8d). These are slightly lower

than some published values, and this may indicate that our dataset has somewhat stronger

site terms than usual sites.

The number of recordings used may have an effect on our results. In this study we used

a criterion for the minimum number of recordings per event, which we set at 3. We

checked the robustness of our estimates by running a parametric analysis for PGA, where

we shifted this criterion towards stricter values, namely 5, 8, 10, 12, and 14 (Fig. 9). The

results were found to be very stable from 3 up to 8 recordings per event (Fig. 9a).

Whenever the criterion became stricter than 10, s decreased, as was expected, since each

event term was even better determined. The downside of this is that there were fewer

events left in the dataset (half or less), as shown in Fig. 9b. At the same time, when the

criterion became stricter than 10, the uS2S increased slightly. This has been observed

before, and for the US this increase is of the order of 10% (N. Abrahamson, unpublished

results), which is similar to what we observe in this study. Our final decision was to keep

our criterion value at 3 recordings per event. This value gives us a good estimate of all

components of uncertainty, without sacrificing any of the data, especially as this would

have a heavy effect on longer periods.

Another aspect of interest to the stability and robustness of our estimates is the question

of representation of different site types in the dataset. As we mentioned in the ‘‘Data and

Metadata’’ section, rock and soil sites are not represented equally, as is almost always the

case. Added to the magnitude-distance correlations in our dataset, this may cause further

trade-offs between s and u. We compute the average Vs30 per event, as an index of the

prevalent type of station that recorded each event. In Fig. 10 we plot our dBe residuals for

Fig. 9 a Dependence of uncertainty components with the criterion of minimum required number of
recordings per event. Results are for PGA. b Shrinkage of the dataset as the minimum number of recordings/
event criterion increases
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each event against this average Vs30 value: e.g. for Vs30 = 300 m/s, the event was

recorded mostly by soft soil stations, while for 800 m/s, the event was recorded by mostly

rock stations. The latter case is very rare, but it is evident from the plot that there is some

correlation between residuals and Vs30 values. This correlation is still there even if we use

a stronger minimum recording per event criterion, e.g. 10 rather than 3. This indicates that

there are likely some correlations in our dataset between source and site terms, but—as in

most datasets—this cannot be overcome.

Having tested the robustness and stability of the results, we proceeded to observe

tendencies in them, and understand dependencies with various parameters. First we use the

uSS,S results to find which sites have the strongest and weakest variability in EURO-

SEISTEST. In Fig. 11a, we plot the stations of our array, colour-coded as to their uSS,S

values, at different frequencies: PGA, 1 and 2 Hz. In the plots, the scale from blue to

orange orders stations from the least to the most variable. The plots indicate that the

stations in the EW axis are less variable overall than some of the stations along the NS axis.

Station PRO_000 has the highest uSS,S at high frequencies, but is rather stable at low

frequencies. This could be related to topographic effects, as it is the only station of the

array located on a hill. Rai et al. (2016) observed higher uSS,S due to topography, but

mostly due to troughs rather than peaks in the terrain. Station TST_196 has the highest

uSS,S at 1 Hz. The resonant frequency of the soil column at TST is close to 1 Hz, so this

could be related to the presence of a downgoing wavefield. The variability near the basin

edges along the NS axis (stations PRR, STC) could be related to basin edge and lateral

discontinuity effects, but if it is so, it is not clear how it behaves with frequency. The

variability of most other stations is harder to speculate upon without complementing these

results with simulations.

At this point is it useful to try to understand how the site-related variable in the GMPE

can affect results. Figure 11b, c show the uss,s, i.e., the variability per station, and dS2S,
i.e., the systematic deviations from the average site response scaling for each site, for the

two limit cases presented in the first section: a GMPE with no site information (solid lines),

and one with measured Vs30 as a proxy for site response scaling (dashed lines). We focus

on the surface and downhole stations in the two boreholes, namely stations PRO_000,

Fig. 10 Dependence of between-event residuals with the averaged Vs30 per event for different minimum
recordings per event criteria (3 and 10 recordings/event)
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PRO_033, TST_000, and TST_196. Figure 11b shows that uss,s is very similar for both

models, with and without Vs30 knowledge. In Fig. 11c we see that adding the knowledge of

Vs30 brings dS2Ss closer to zero at all frequencies studied. When models include a site

variable, dS2Ss values do not indicate absolute site response, but rather the deviation from

the response predicted for the particular site class or Vs30; i.e., they indicate how far the

prediction is from reality, and if the deviation is large, then this means that there would be

a lot to be gained from site-specific analyses at that site. For the two downhole stations,

PRO_033, and TST_196, dS2Ss changes noticeably when including Vs30 in the GMPE

(meaning the initial dS2S values are rather representative of actual site response at those

stations), while for the surface stations, less so. This indicates that use of Vs30 in the model

improves the prediction for the hard-rock (downhole) sites more than it does for softer

(surface) sites. The possible effect of the GMPE on uS2S will be discussed again in the

following section, when we test different existing models to compute single-station sigmas.

We also examined the existence of any dependencies of the between-event and the

corrected within-event residuals with parameters such as magnitude, distance, and depth

(Fig. 12). Global datasets have shown certain trends with magnitude and distance, but their

magnitude range is well above the magnitudes of our dataset, so it is interesting to see to

which extent we could detect such trends in our data. Figure 12a shows that s tends to

decrease for smaller magnitudes (rather than increase, as is sometimes observed), and that

this tendency is stronger for longer periods. This could be related to correlations between

source and site terms, possibly due to the fact that for very small magnitudes, the ‘‘kappa’’

factor, j, of Anderson and Hough (1984) may often mask the true corner frequency of the

source. Conversely, uSS tends to increase for smaller magnitudes (Fig. 12c), and this is

clearer for higher frequencies. This effect has been observed before down to M4.5 (e.g.

Rodriguez-Marek et al. 2013), and is seen here to hold also for magnitude ranges down to

M2. There are several possible reasons for this effect, including poor locations and depth

(a)

(b) (c)

Fig. 11 a EUROSEISTEST stations colour-coded with respect to their variability uSS,S for PGA (left), 2
(middle) and 1 Hz (right). The scale of blue, green, yellow and orange goes shows the transition from the
least variable to the most variable station. b The effect of including a site-related variable in the GMPE (no
site information in solid lines vs. knowledge Vs30 in dashed lines) on uss,s for the surface and downhole
stations at TST and PRO over all frequencies studied. c Same as (b), for dS2Ss

Bull Earthquake Eng

123



estimates for very small events, or higher stress drop variability and kappa effects, which

may cause some of the source uncertainty to map onto u. The correlation of uSS with

distance (Fig. 12d) is not as clear. For shorter distances, uSS seems to decrease at longer

periods and increase for higher frequencies. The latter is found by Rodriguez-Marek et al.

2013. To the extent that events recorded at short distances are generally small events, this

latter tendency is consistent with the previous observation. Finally, the dependency with

depth (Fig. 12b) is not very clear either, but uSS seems to increase slightly for shallower

events at longer periods. This could be related to oblique incidence of the incoming waves

onto the basin edges in the case of very shallow events. However, depth is the least

constrained parameter and we can merely speculate as to its effect.

Another possible interpretation for the increase of site variability for small events

compared to large ones has to do with the azimuthal coverage. Larger events in our dataset

are very few to provide a good azimuthal coverage of the EUROSEISTEST, while small

events tend to surround the site better. Poor azimuthal coverage may lead to poor path

sampling and hence to lower variability for larger events, while the good coverage may

lead to better sampling of all paths surrounding the site, and hence higher variability for

smaller events. This is difficult to quantify. One index that has been proposed is the

closeness index (CI) defined by Lin et al. (2011). The CI value ranges from 0 for collocated

events to almost 2 for events at 180� difference in azimuth from a site. A CI higher than 1

indicates that there are no significant single-path effects that would decrease the uSS

towards uSP. Following the methodology those authors lay out, we computed the closeness

index for each pair of events recorded by each station, together with the normalized

difference in the within-events variability for each pair of events. We computed the

(a) (b)

(c) (d)

Fig. 12 Dependence of a s on magnitude, b uSS on hypocentral depth, c uSS on magnitude, and d of uSS on
closest distance to the rupture at 1, 2 Hz, and PGA. The solid lines indicate the average value and the
symbols are the binned values
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average CI per station and found that they range from 1.3 to 1.6, so this index does not

show significant single-path effects for our dataset, likely due to poor coverage.

6 Using existing GMPEs to compute single-station sigma

Our reasoning for using a local GMPE to study residuals and standard deviations in our

dataset was given in the previous section. In this section, we further investigate the pos-

sibility of using existing global GMPEs for the purpose of computing single-station

variability (this was done e.g. by Chen and Faccioli 2013, for New Zealand). Of the very

large number of existing models, we choose a few representative ones based on certain

criteria:

• Akkar et al. (2014), as an example of the most recent generation of European models

from the RESORCE database,

• Cauzzi et al. (2015), as a recent model for active crustal regions outside Europe

• Bindi et al. (2011), as a European GMPE which contains a considerable amount of data

between M4.0 and M4.5,

• Danciu and Tselentis (2007) and Skarlatoudis et al. (2003), as the most recent models

developed for crustal events in Greece, and

• Skarlatoudis et al. (2004), as a model specifically developed for smaller magnitudes in

Greece.

Table 1 presents some of the salient characteristics of these models, including magni-

tude and distance range, distance metric, style-of-faulting (normal, reverse, strike-slip, and

thrust), use of quadratic scaling for magnitude and site characterization information. Many

of these models predict quantities the scope of the present study, so in the last column we

only mention whether they predict SA at a full range of periods or merely PGA. (which we

denote as a and b), while Skarlatoudis et al. (2004) proposes two formulae for PGA from

small events (which we denote as a and b) and one for the mixed dataset of small and large

together (which we denote as x). Cauzzi et al. (2015) propose one equation with three

alternative ways of computing site amplification (we denote these as a,b,c). We also note

here that all models but one have a range of applicability above M4.0–M4.5. From Fig. 2 it

Table 1 Comparison of the salient features of the following GMPEs: Akkar et al. (2014), Cauzzi et al.
(2015), Bindi et al. (2011), Danciu and Tselentis (2007), Skarlatoudis et al. (2003, 2004)

# Model Mw R R type Site variable SoF M2 T range

1 ASB14 4.0–7.5 200 Rjb, Repi, Rhyp VS30 N, R, SS Yes SA(T)

2 Bindi11 4.0–6.9 200 Rjb (Repi if
M\ 5.5)

Site class N, R, SS,
unknown

Yes SA(T)

3 Danciu 4.5–6.9 136 Repi Site class N, SS/thrust No SA(T)

4 Ska03 4.5–7.0 160 Repi Site class N, SS/thrust No PGA

5 Ska04 1.7–5.1 40 Repi None None (mostly N) No PGA

6 Cau14a
Cau14bc

4.5–7.9 150 Rrup Site class Vs30 N, R, SS Yes SA(T)
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is clear that most of our data come from smaller earthquakes. We will revisit this point in

detail in what follows.

We analyze the residuals between the predictions of these models and our dataset with

refined metadata. We assume normal faulting mechanisms for our events, as this is by far

the prevalent mechanism in the region. We use hypocentral distance, Rhyp, for Akkar et al.

(2014) and Cauzzi et al. (2015), and the epicentral distance, Repi, for all other models. We

are interested first in observing how each model’s scaling fits our dataset, and secondly in

whether any scaling problems are ‘absorbed’ by the between-event uncertainty, s, and
possibly by the systematic deviation from average site scaling (uS2S), so as to allow an

adequate estimate of the single-station variability, uSS.

Figure 13 shows a comparison of all the standard deviation components (s, u, r, uS2S,

uSS, rSS) computed at all periods available using the chosen GMPEs. The standard devi-

ations computed in the first part of this study, where we fit a new GMPE to the data, are

shown for comparison. The first observation is that the uSS seems practically independent

of the model used, as all data points coincide for each period. The systematic deviation,

uS2S, is rather stable for PGA, but at longer periods exhibits some discrepancies between

existing models and our model, as well as between individual existing models. These

discrepancies are stronger as periods become longer and will be discussed later. But the

most striking discrepancy is between s values, which appear to be strongly dependent on

the model used. All models show larger s values than what we achieved by fitting a new

GMPE, especially around 2–10 Hz. Up to 1 s, the model of Akkar et al. (2014) shows the

largest increase in s, while that of Danciu and Tselentis (2007)—and at short periods, also

that of Cauzzi et al. (2015)—lie closest to the s of the herein computed local GMPE.

In Fig. 14a we show dBe residuals for all GMPEs tested. Residuals trends with mag-

nitude are evident in all cases, suggesting that the magnitude scaling used in these models

is not appropriate for our dataset. This was to be expected, given that the magnitude scaling

becomes steeper as magnitude decreases and our data are beneath typical model magnitude

ranges. The figure indicates the equation of the magnitude trend (a ? bM) and its coef-

ficient of correlation (R2) to quantify the deviation of each model’s magnitude scaling from

our data. Based on the metrics, the model of Danciu and Tselentis (2007) has the least

deviation. However, in Fig. 14b we see that the dWSes residuals are well balanced with

distance. This means that, for all models tested, the magnitude scaling errors were suc-

cessfully absorbed by the events terms, whereas there is no discernible error in the distance

scaling due to the fact that the tested GMPEs come from the same or similar seismotec-

tonic regions (Greece or Europe). We stress that it is these two conditions that allow us to

accurately compute single-station sigma despite the obviously large r values and the

biased total residuals.

Finally, we examined the differences between tested models in the final products: uS2S

and uSS. In Fig. 15 we focus on PGA, and break up the average values of uS2S and uSS into

their site-specific components, uSS,S and dS2S. We recall at this point the unusually high

number of recordings per station in this study compared to typical global datasets, which

ensures good estimates of site-specific terms. In Fig. 15 we plot uSS,S and dS2S per station

and also show the average values for comparison. uSS,S is remarkably stable and models

converge the best at the most and least variable sites of the array (PRO_000 and PRS,

respectively). dS2S is rather stable for most stations, but shows striking variability for

stations PRO_033 and TST_196, which are the only two very hard rock sites in the array.

We note that models that do not account for site information in their formulation (i.e.,

Skarlatoudis et al. 2004) plot far from models that use Vs30 as a predictor variable (i.e., our

ad hoc GMPE, the Akkar et al. 2014, and the Cauzzi et al. 2015 b model), while models
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that use a site classification switch (i.e., Skarlatoudis et al. 2003; Danciu and Tselentis

2007; Bindi et al. 2011) tend to plot in between. The difference at PRO_033 between our

model and the others that use Vs30 is significant, but this is in line with what we observed

during testing different formulations of our own GMPE. Similar observations can be made

for the results at 1 Hz (Fig. 15b), i.e., uSS,S is again rather stable, while differences in

dS2S are even greater at the two hard rock stations.

(a) (b)

(c) (d)

(e) (f)

Fig. 13 Comparison of the standard deviation components (s, u, r, uS2S, uSS, rSS) as computed at all
periods available using the following GMPEs: Akkar et al. (2014; ABS14), Cauzzi et al. (2015), Bindi et al.
(2011; Bindi11), Danciu and Tselentis (2007; Danciu07), Skarlatoudis et al. (2003; Ska03, 2004; Ska04).
The standard deviations computed in the first part of this study, fitting a local GMPE to the data, are shown
by the black solid line. We note that the uSS is practically independent of the model used, while s is very
strongly dependent on the model. All models show much greater s values than what we achieved by fitting a
new GMPE. Up to 1 s, the model of Akkar et al. (2014) shows the largest increase in s, while that of Danciu
and Tselentis (2007) lies closest to the results of the new GMPE. All values are natural logarithms

cFig. 14 a Between-event residuals for observed spectral accelerations at PGA for all GMPEs used, showing
clear trends with magnitude, b Within-event residuals for observed spectral accelerations at PGA for all
GMPEs used, showing no trend with distance. GMPE codes as in the caption of Fig. 13
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(a)

(b)
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(a)

(b)

Fig. 15 a Comparison of the standard deviation components dS2S and uSS,S computed for PGA using
different GMPEs for each station of the array (Vs30 values in parenthesis—stations are ordered by increasing
Vs30). The standard deviations computed in the first part of this study, fitting a local GMPE to the data, are
shown by the black solid line. We note that the overall uSS is practically independent of the model used,
while uSS,S shows some variability for stations E01 and TST_136. uS2S,S shows the largest variability for the
two hardest downhole stations: PRO_033 and TST_196, b Same as in (a) but for 1 Hz. GMPE codes as in
the caption of Fig. 13
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7 Conclusions

Ground motion variability was studied using a carefully selected dataset, well constrained

in terms of source parameters and site information. Refinement of earthquake locations and

magnitudes led to a significant reduction of the between-event component s of global

aleatory uncertainty r (by 30% at PGA and up to 50% at 1 Hz). This underlines once more

the importance of the seismological metadata quality in constraining the uncertainty in a

PSHA framework.

Having a good knowledge of the recording sites categories, we computed single-station

components of uncertainty and found that, within a partially non-ergodic framework, the

total r and u can be decreased by about 20 (rSS) and 30% (uSS), respectively. Our single-

station values, when compared to corresponding values published in the literature, were

found to be lower and rather closer to published single-path estimates. We cannot exclude

the possibility of some effect of poor ray coverage in our dataset, although the classic

single-path index (the closeness index) does not indicate such effects in our case.

We examined the behavior of uncertainty components with period from 0.01 to 2 s, and

found that s increases as expected. We found a small peak in the uS2S around 0.7–0.8 s,

which may indicate greater variability around some of the sites’ prevalent resonance

period. We also investigated the sensitivity of our results to the number of recordings used.

Despite some correlations in the data, we found that a criterion of 3 recordings per event is

sufficient for high frequencies, and is actually necessary to preserve enough data for low

frequencies. However, most stations in the dataset have much higher numbers of record-

ings, yielding good estimates of site terms. We next identified the stations of the array with

the highest and lowest site variability (uSS,S). uSS,S does not correlate with Vs30, but we

speculate some correlation to 2D/3D wave propagation effects, such as topographic

amplification at PRO_000, down-going wave fields at TST_196, and basin edge effects at

PRR, PRS and STC, all of which would exhibit sensitivity to azimuth, among other factors.

By binning our data with respect to magnitude, distance and depth, we observed tendencies

at different periods. At smaller magnitudes, s tends to decrease and uSS tends to increase.

This may be due to poorer constraints for smaller events, which may map on uSS rather

than s due to j and source-site trade-offs. Dependencies with distance and depth can be

seen in our data but are less straightforward.

Finally, we investigated an alternative approach towards computing uSS: the use of

existing predictive GMPEs in lieu of creating an ad hoc GMPE with local data. We select

some models from Greece and Europe, mostly calibrated for larger magnitudes, but

compatible in terms of regional attenuation. All models greatly overpredict ground motion

with respect to our data, mainly because of errors in magnitude scaling, which is steeper for

our small events. However, we found that the event terms correct for these large errors (the

price being much higher s values) and that within-event residuals are well balanced, which

indicates that there is no significant error in distance scaling. Under these two conditions,

we suggest that the uSS component can also be computed this way, i.e., by resorting to

existing global GMPEs rather than fitting a new one through the data. However, this

implies the need to use a regionally applicable model, so that the distance scaling is

adequate. Up to now, either a local model is calibrated in order to remove the mean and

analyse residuals (this reflects most cases), or a global model is adopted. This comparison

test has not been performed before, and is important for cases where not enough data is

available to create a local model, or when site-specific PSHA is performed.
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We also point out that the GMPE formulation (namely, its site response predictor

variable) can affect the systematic deviation dS2S. dS2S can vary between models that

account for site response directly through a Vs30 proxy and models that do not account for

it, or use site-class-based switches. These differences are large for the two hard rock

downhole stations of our array, TST_196 and PRO_33, at all frequencies, especially short

ones. This may indicate that GMPEs may be poorly constrained where they are sometimes

most needed, i.e., for hard rock; this may be due to the lack of hard-rock data in global

datasets, the greater difficulty in characterizing hard-rock sites compared to soft sites, and

the smaller representativeness of Vs30 as a proxy (see also Ktenidou and Abrahamson

2016). However, the discrepancy between GMPEs in dS2S does not affect uSS,S values

overall, which are rather consistent between models at all sites and over all periods.
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