34 research outputs found

    Physiological, perceptual, and technical responses to on-court tennis training on hard and clay courts

    Full text link
    The aim of this study was to investigate the effect of court surface (clay vs. hard court) on technical, physiological, and perceptual responses to on-court tennis training. Four high-performance junior male players performed 2 identical training sessions on hard and clay courts, respectively. Sessions included both physical conditioning and technical elements as led by the coach. Each session was filmed for later notational analysis of stroke count and error rates. Furthermore, players wore a global positioning satellite device to measure distance covered during each session, while heart rate, countermovement jump distance, and capillary blood measures of metabolites were measured before, during, and after each session. Additionally, a respective coach and athlete rating of perceived exertion (RPE) were measured after each session. Total duration and distance covered during each session were comparable (p > 0.05; d 0.05; d 0.05; d > 0.90). Furthermore, large effects for increased heart rate, blood lactate, and RPE values were evident on clay compared with hard courts (p > 0.05; d > 0.90). Additionally, although player and coach RPE on hard courts were similar, there were large effects for coaches to underrate the RPE of players on clay courts (p > 0.05; d > 0.90). In conclusion, training on clay courts results in trends for increased heart rate, lactate, and RPE values, suggesting that sessions on clay courts tend towards higher physiological and perceptual loads than hard courts. Furthermore, coaches seem effective at rating player RPE on hard courts but may underrate the perceived exertion of sessions on clay courts. © 2013 National Strength and Conditioning Association

    Education associated with a delayed onset of terminal decline

    Get PDF
    Background: the terminal decline hypothesis suggests an acceleration in the rate of loss of cognitive function before death. Evidence about the association of educational attainment and the onset of terminal decline is scarce. Objective: to investigate the association of education with the onset of terminal decline in global cognitive function measured by Mini Mental State Exam (MMSE) scores. Subjects: deceased participants of the Cambridge City over 75 Cohort Study who were interviewed at about 2, 7, 9, 13, 17 and 21 years after baseline. Methods: regular and Tobit random change point growth models were fitted to MMSE scores to identify the onset of terminal decline and assess the effect of education on this onset. Results: people who left school at an older age had a delayed onset of terminal decline. Thus better educated individuals experience a slightly shorter period of faster decline before death. Conclusion: an important finding emerging from our work is that education does appear to delay the onset of terminal decline, although only by a limited amount

    Extending work tolerance time in the heat in protective ensembles with pre- and per-cooling methods

    Get PDF
    © 2020 Elsevier Ltd Objectives: Investigate whether a range of cooling methods can extend tolerance time and/or reduce physiological strain in those working in the heat dressed in a Class 2 chemical, biological, radiological, nuclear (CBRN) protective ensemble. Methods: Eight males wore a Class 2 CBRN ensemble and walked for a maximum of 120 min at 35 °C, 50% relative humidity. In a randomised order, participants completed the trial with no cooling and four cooling protocols: 1) ice-based cooling vest (IV), 2) a non-ice-based cooling vest (PCM), 3) ice slushy consumed before work, combined with IV (SLIV) and 4) a portable battery-operated water-perfused suit (WPS). Mean with 95% confidence intervals are presented. Results: Tolerance time was extended in PCM (46 [36, 56] min, P = 0.018), SLIV (56 [46, 67] min, P < 0.001) and WPS (62 [53, 70] min, P < 0.001), compared with control (39 [30, 48] min). Tolerance time was longer in SLIV and WPS compared with both IV (48 [39, 58 min]) and PCM (P ≤ 0.011). After 20 min of work, HR was lower in SLIV (121 [105, 136] beats·min−1), WPS (117 [101, 133] beats·min−1) and IV (130 [116, 143] beats·min−1) compared with control (137 [120, 155] beats·min−1) (all P < 0.001). PCM (133 [116, 151] beats·min−1) did not differ from control. Conclusion: All cooling methods, except PCM, utilised in the present study reduced cardiovascular strain, while SLIV and WPS are most likely to extend tolerance time for those working in the heat dressed in a Class 2 CBRN ensemble.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Accepted versio

    Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    Get PDF
    © 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio

    Core temperature responses to cold-water immersion recovery: A pooled-data analysis

    Full text link
    © 2018 Human Kinetics, Inc. Purpose: To examine the effect of postexercise cold-water immersion (CWI) protocols, compared with control (CON), on the magnitude and time course of core temperature (Tc) responses. Methods: Pooled-data analyses were used to examine the Tc responses of 157 subjects from previous postexercise CWI trials in the authors’ laboratories. CWI protocols varied with different combinations of temperature, duration, immersion depth, and mode (continuous vs intermittent). Tc was examined as a double difference (ΔΔTc), calculated as the change in Tc in CWI condition minus the corresponding change in CON. The effect of CWI on ΔΔTc was assessed using separate linear mixed models across 2 time components (component 1, immersion; component 2, postintervention). Results: Intermittent CWI resulted in a mean decrease in ΔΔTc that was 0.25°C (0.10°C) (estimate [SE]) greater than continuous CWI during the immersion component (P = .02). There was a significant effect of CWI temperature during the immersion component (P = .05), where reductions in water temperature of 1°C resulted in decreases in ΔΔTc of 0.03°C (0.01°C). Similarly, the effect of CWI duration was significant during the immersion component (P = .01), where every 1 min of immersion resulted in a decrease in ΔΔTc of 0.02°C (0.01°C). The peak difference in Tc between the CWI and CON interventions during the postimmersion component occurred at 60 min postintervention. Conclusions: Variations in CWI mode, duration, and temperature may have a significant effect on the extent of change in Tc. Careful consideration should be given to determine the optimal amount of core cooling before deciding which combination of protocol factors to prescribe

    Cooling athletes with a spinal cord injury

    Get PDF
    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on additional findings from the able-bodied literature, the combination of methods used prior to and during exercise and/or during rest periods/half-time may increase the effectiveness of a strategy. However, due to the paucity of research involving athletes with an SCI, it is difficult to establish an optimal cooling strategy. Future studies are needed to ensure that research outcomes can be translated into meaningful performance enhancements by investigating cooling strategies under the constraints of actual competition. Cooling strategies that meet the demands of intermittent wheelchair sports need to be identified, with particular attention to the logistics of the sport

    A Reduced Astrocyte Response to β-Amyloid Plaques in the Ageing Brain Associates with Cognitive Impairment

    Get PDF
    Aims β-amyloid (Aβ) plaques are a key feature of Alzheimer’s disease pathology but correlate poorly with dementia. They are associated with astrocytes which may modulate the effect of Aβ-deposition on the neuropil. This study characterised the astrocyte response to Aβ plaque subtypes, and investigated their association with cognitive impairment. Methods Aβ plaque subtypes were identified in the cingulate gyrus using dual labelling immunohistochemistry to Aβ and GFAP+ astrocytes, and quantitated in two cortical areas: the area of densest plaque burden and the deep cortex near the white matter border (layer VI). Three subtypes were defined for both diffuse and compact plaques (also known as classical or core-plaques): Aβ plaque with (1) no associated astrocytes, (2) focal astrogliosis or (3) circumferential astrogliosis. Results In the area of densest burden, diffuse plaques with no astrogliosis (β = -0.05, p = 0.001) and with focal astrogliosis (β = -0.27, p = 0.009) significantly associated with lower MMSE scores when controlling for sex and age at death. In the deep cortex (layer VI), both diffuse and compact plaques without astrogliosis associated with lower MMSE scores (β = -0.15, p = 0.017 and β = -0.81, p = 0.03, respectively). Diffuse plaques with no astrogliosis in layer VI related to dementia status (OR = 1.05, p = 0.025). In the area of densest burden, diffuse plaques with no astrogliosis or with focal astrogliosis associated with increasing Braak stage (β = 0.01, p<0.001 and β = 0.07, p<0.001, respectively), and ApoEε4 genotype (OR = 1.02, p = 0.001 and OR = 1.10, p = 0.016, respectively). In layer VI all plaque subtypes associated with Braak stage, and compact amyloid plaques with little and no associated astrogliosis associated with ApoEε4 genotype (OR = 1.50, p = 0.014 and OR = 0.10, p = 0.003, respectively). Conclusions Reactive astrocytes in close proximity to either diffuse or compact plaques may have a neuroprotective role in the ageing brain, and possession of at least one copy of the ApoEε4 allele impacts the astroglial response to Aβ plaques
    corecore