437 research outputs found

    How Does Socioeconomic Development Affect COPD Mortality? An Age-Period-Cohort Analysis from a Recently Transitioned Population in China

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death, particularly in developing countries. Little is known about the effects of economic development on COPD mortality, although economic development may potentially have positive and negative influences over the life course on COPD. We took advantage of a unique population whose rapid and recent economic development is marked by changes at clearly delineated and identifiable time points, and where few women smoke, to examine the effect of macro-level events on COPD mortality. Methods: We used Poisson regression to decompose sex-specific COPD mortality rates in Hong Kong from 1981 to 2005 into the effects of age, period and cohort. Results: COPD mortality declined strongly over generations for people born from the early to mid 20th century, which was particularly evident for the first generation to grow up in a more economically developed environment for both sexes. Population wide COPD mortality decreased when air quality improved and increased with increasing air pollution. COPD mortality increased with age, particularly after menopause among women. Conclusions: Economic development may reduce vulnerability to COPD by reducing long-lasting insults to the respiratory system, such as infections, poor nutrition and indoor air pollution. However, some of these gains may be offset if economic development results in increasing air pollution or increasing smoking. © 2011 Chen et al.published_or_final_versio

    Reorganisation of Wnt-response pathways in colorectal tumorigenesis

    Get PDF
    In most colorectal tumours, APC mutation stabilises β-catenin and mimics elements of Wnt growth factor signalling, but the high frequency of epigenetic loss of Wnt antagonists indicates an additional role for ligand-mediated Wnt signalling. Here, we have investigated the expression of key components of β-catenin-independent Wnt response pathways to determine whether their profiles change during the transition from normal mucosa to colorectal adenomas. Transcription of the Wnt/planar cell polarity pathway determinant NKD1 (naked cuticle homologue 1) was induced in adenomas by a median 135-fold and in cancers by 7.4-fold. While some Frizzleds (FZDs) were downregulated in adenomas, the Wnt/Ca2+ receptors FZD3 and FZD6 were induced by a median factor of 6.5 and 4.6, respectively. Naked cuticle homologue 1, FZD3 and FZD6 expression were coordinated in pre-malignant disease, but this relationship was lost in invasive cancers, where FZD induction was seen less frequently. Naked cuticle homologue 1 expression was associated with nuclear localisation of phospho-c-Jun in adenomas. In cultured cells, NKD1 transcription was induced by lithium chloride but FZD3 expression required Wnt growth factor treatment. These data show that Wnt responses are consistently directed towards both β-catenin-independent routes in early colorectal tumorigenesis and elements of this are retained in more advanced cancers. These β-catenin-independent Wnt signalling pathways may provide novel targets for chemoprevention of early colorectal tumours

    Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review

    Get PDF
    Background: Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p> Methods/Principal Findings: We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p> Conclusions/Significance: C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p&gt

    Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing

    Get PDF
    Voltage-gated sodium channels are vital membrane proteins essential for electrical signalling; in humans, they are key targets for the development of pharmaceutical drugs. Here we report the crystal structure of an open-channel conformation of NavMs, the bacterial channel pore from the marine bacterium Magnetococcus sp. (strain MC-1). It differs from the recently published crystal structure of a closed form of a related bacterial sodium channel (NavAb) by having its internal cavity accessible to the cytoplasmic surface as a result of a bend/rotation about a central residue in the carboxy-terminal transmembrane segment. This produces an open activation gate of sufficient diameter to allow hydrated sodium ions to pass through. Comparison of the open and closed structures provides new insight into the features of the functional states present in the activation cycles of sodium channels and the mechanism of channel opening and closing

    Fast estimation of the difference between two PAM/JTT evolutionary distances in triplets of homologous sequences

    Get PDF
    BACKGROUND: The estimation of the difference between two evolutionary distances within a triplet of homologs is a common operation that is used for example to determine which of two sequences is closer to a third one. The most accurate method is currently maximum likelihood over the entire triplet. However, this approach is relatively time consuming. RESULTS: We show that an alternative estimator, based on pairwise estimates and therefore much faster to compute, has almost the same statistical power as the maximum likelihood estimator. We also provide a numerical approximation for its variance, which could otherwise only be estimated through an expensive re-sampling approach such as bootstrapping. An extensive simulation demonstrates that the approximation delivers precise confidence intervals. To illustrate the possible applications of these results, we show how they improve the detection of asymmetric evolution, and the identification of the closest relative to a given sequence in a group of homologs. CONCLUSION: The results presented in this paper constitute a basis for large-scale protein cross-comparisons of pairwise evolutionary distances

    Long-Lasting Inhibitory Effects of Fetal Liver Mesenchymal Stem Cells on T-Lymphocyte Proliferation

    Get PDF
    Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27kip1expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4low/CD8low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection

    IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis

    Get PDF
    BACKGROUND: Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. PRINCIPAL FINDINGS: In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. SIGNIFICANCE: Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile

    Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus

    Get PDF
    The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day−1·kg−1). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes

    Modulation of Human Mesenchymal Stem Cell Immunogenicity through Forced Expression of Human Cytomegalovirus US Proteins

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. METHODOLOGY/PRINCIPAL FINDINGS: We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. CONCLUSIONS AND SIGNIFICANCE: These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch
    corecore