57 research outputs found

    Reducing the False Positive Rate Using Bayesian Inference in Autonomous Driving Perception

    Full text link
    Object recognition is a crucial step in perception systems for autonomous and intelligent vehicles, as evidenced by the numerous research works in the topic. In this paper, object recognition is explored by using multisensory and multimodality approaches, with the intention of reducing the false positive rate (FPR). The reduction of the FPR becomes increasingly important in perception systems since the misclassification of an object can potentially cause accidents. In particular, this work presents a strategy through Bayesian inference to reduce the FPR considering the likelihood function as a cumulative distribution function from Gaussian kernel density estimations, and the prior probabilities as cumulative functions of normalized histograms. The validation of the proposed methodology is performed on the KITTI dataset using deep networks (DenseNet, NasNet, and EfficientNet), and recent 3D point cloud networks (PointNet, and PintNet++), by considering three object-categories (cars, cyclists, pedestrians) and the RGB and LiDAR sensor modalities.Comment: This paper has been submitted to the journal Pattern Recognition Letter

    Collaborative multidisciplinary learning : quantity surveying students’ perspectives

    Get PDF
    The construction industry is highly fragmented and is known for its adversarial culture, culminating in poor quality projects not completed on time or within budget. The aim of this study is thus to guide the design of QS programme curricula in order to help students develop the requisite knowledge and skills to work more collaboratively in their multi-disciplinary future workplaces. A qualitative approach was considered appropriate as the authors were concerned with gathering an initial understanding of what students think of multi-disciplinary learning. The data collection method used was a questionnaire which was developed by the Behaviours4Collaboration (B4C) team. Knowledge gaps were still found across all the key areas where a future QS practitioner needs to be collaborative (either as a project contributor or as a project leader) despite the need for change instigated by the multi-disciplinary (BIM) education revolution. The study concludes that universities will need to be selective in teaching, and innovative in reorienting, QS education so that a collaborative BIM education can be effected in stages, increasing in complexity as the students’ technical knowledge grows. This will help students to build the competencies needed to make them future leaders. It will also support programme currency and delivery

    Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Get PDF
    Background Birth-related acute profound hypoxic–ischaemic brain injury has specific patterns of damage including the paracentral lobules. Objective To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Materials and methods Study subjects included 13 children with proven acute profound hypoxic–ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. Results There was statistically significant narrowing of the mid–posterior body and genu of the corpus callosum in children with hypoxic–ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Conclusion Focal volume loss is seen in the corpus callosum of children with hypoxic–ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic–ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic–ischaemic brain injur

    Automated Planning of Concrete Joint Layouts with 4D-BIM

    Get PDF
    Concrete pouring represents a major critical path activity that is often affected by design limitations, structural considerations and on-site operational constraints. As such, meticulous planning is required to ensure that both the aesthetic and structural integrity of joints between cast in-situ components is achieved. Failure to adequately plan concrete pouring could lead to structural defects, construction rework or structural instability, all having major financial implications. Given the inherent complexity of large-scale construction projects, the ‘manual planning’ of concrete pouring is a challenging task and prone to human errors. Against this backdrop, this study developed 4D Building Information Management (BIM) approach to facilitate automated concrete joint positioning solution (as a proof of concept) for design professionals and contractors. The study first developed structural model in Revit, then extracted spatial information regarding all construction joints and linked them to dynamic Microsoft (MS) Excel and Matlab spreadsheets using integration facilitated by Dynamo software. Midspan points of each beam as well as floor perimeter information were gathered via codes developed in MS Excel macros. Based on the Excel outputs, Matlab programming was used to determine best concreating starting points and directions, and daily allowed concrete volume, considering limitations due to cold joints. These information were then pushed back to Revit via Dynamo in order to develop daily concrete scheduling. The developed automated programme framework offers a cost-effective and accurate methodology to address the limitations and inefficiencies of traditional methods of designing construction joints and planning pours. This framework extends the body of knowledge by introducing innovative solutions to integrate structural design considerations, constructional procedures and operational aspects for mitigating human error, and providing a novel, yet technically sound, basis for further application of BIM in structural engineering

    Known and unknown requirements in healthcare

    Get PDF
    We report experience in requirements elicitation of domain knowledge from experts in clinical and cognitive neurosciences. The elicitation target was a causal model for early signs of dementia indicated by changes in user behaviour and errors apparent in logs of computer activity. A Delphi-style process consisting of workshops with experts followed by a questionnaire was adopted. The paper describes how the elicitation process had to be adapted to deal with problems encountered in terminology and limited consensus among the experts. In spite of the difficulties encountered, a partial causal model of user behavioural pathologies and errors was elicited. This informed requirements for configuring data- and text-mining tools to search for the specific data patterns. Lessons learned for elicitation from experts are presented, and the implications for requirements are discussed as “unknown unknowns”, as well as configuration requirements for directing data-/text-mining tools towards refining awareness requirements in healthcare applications

    Which computer-use behaviours are most indicative of cognitive decline? Insights from an expert reference group

    Get PDF
    Computer use is becoming ubiquitous amongst older adults. As computer-use depends on complex cognitive functions, measuring individuals’ computer-use behaviours over time may provide a way to detect changes in their cognitive functioning. However, it is uncertain which computer-use behaviour changes are most likely to be associated with declines of particular cognitive functions. To address this, we convened six experts from clinical and cognitive neurosciences to take part in two workshops and a follow-up survey to gain consensus on which computer-use behaviours would likely be the strongest indicators of cognitive decline. This resulted in a list of twenty-one computer-use behaviours that the majority of experts agreed would offer a ‘strong indication’ of decline in a specific cognitive function, across Memory, Executive function, Language, and Perception and Action domains. This list enables a hypothesis-driven approach to analysing computer-use behaviours predicted to be markers of cognitive decline

    Intra-regional transportation of a tugboat fouling community between the ports of recife and natal, northeast Brazil

    Full text link
    • 

    corecore