749 research outputs found

    Scaling and Accommodation of Jaw Adductor Muscles in Canidae

    Get PDF
    © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc.The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc

    Dynapenic obesity and the risk of incident Type 2 diabetes: the English Longitudinal Study of Ageing

    Get PDF
    Aim Obesity is a well‐established risk factor for developing Type 2 diabetes. Evidence suggests that sarcopenia, the age‐related decline in muscle mass and strength, may exacerbate diabetes risk in obese individuals. The aim of this study was to determine the combined effect of obesity and low muscle strength, dynapenia, on the risk of incident Type 2 diabetes in older adults. Methods Participants were 5953 (1670 obese) men and women from the English Longitudinal Study of Ageing without known Type 2 diabetes at baseline and for whom handgrip strength, biochemical and other clinical data were collected. A diagnosis of Type 2 diabetes was recorded from self‐reported physician diagnosis over 6 years. Results For each unit increase in grip strength, there was a reduction in diabetes risk (age‐, sex‐ and BMI adjusted HR; 0.98; 95% CI 0.96–0.99). The risk of Type 2 diabetes was elevated in all obese participants, but was greatest in those with low handgrip strength (HR = 4.93, 95% CI 2.85, 8.53) compared with non‐obese individuals with high handgrip strength. Eleven per cent of the sample met the threshold for weakness (handgrip strength: men < 26 kg; women < 16 kg) that was associated with elevated Type 2 diabetes risk in obese (HR = 3.57, 95% CI 2.04, 6.24) but not in non‐obese (HR = 0.86, 95% CI, 0.44, 1.68) compared with normal/non‐obese participants. Conclusion Dynapenic obesity, determined by high BMI and low handgrip strength, is associated with increased risk of incident Type 2 diabetes in older people

    Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    Get PDF
    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism

    Reduced physical activity in young and older adults: metabolic and musculoskeletal implications

    Get PDF
    Background: Although the health benefits of regular physical activity and exercise are well established and have been incorporated into national public health recommendations, there is a relative lack of understanding pertaining to the harmful effects of physical inactivity. Experimental paradigms including complete immobilization and bed rest are not physiologically representative of sedentary living. A useful ‘real-world’ approach to contextualize the physiology of societal downward shifts in physical activity patterns is that of short-term daily step reduction. Results: Step-reduction studies have largely focused on musculoskeletal and metabolic health parameters, providing relevant disease models for metabolic syndrome, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), sarcopenia and osteopenia/osteoporosis. In untrained individuals, even a short-term reduction in physical activity has a significant impact on skeletal muscle protein and carbohydrate metabolism, causing anabolic resistance and peripheral insulin resistance, respectively. From a metabolic perspective, short-term inactivity-induced peripheral insulin resistance in skeletal muscle and adipose tissue, with consequent liver triglyceride accumulation, leads to hepatic insulin resistance and a characteristic dyslipidaemia. Concomitantly, various inactivity-related factors contribute to a decline in function; a reduction in cardiorespiratory fitness, muscle mass and muscle strength. Conclusions: Physical inactivity maybe particularly deleterious in certain patient populations, such as those at high risk of T2D or in the elderly, considering concomitant sarcopenia or osteoporosis. The effects of short-term physical inactivity (with step reduction) are reversible on resumption of habitual physical activity in younger people, but less so in older adults. Nutritional interventions and resistance training offer potential strategies to prevent these deleterious metabolic and musculoskeletal effects. Impact: Individuals at high risk of/with cardiometabolic disease and older adults may be more prone to these acute periods of inactivity due to acute illness or hospitalization. Understanding the risks is paramount to implementing countermeasures

    Compensatory changes in energy balance during dapagliflozin treatment in type 2 diabetes mellitus: a randomised double-blind, placebo-controlled, cross-over trial (ENERGIZE)-study protocol.

    Get PDF
    INTRODUCTION: Sodium glucose cotransporter 2 (SGLT2) inhibitors are effective blood-glucose-lowering medications with beneficial effects on body weight in patients with type 2 diabetes mellitus (T2DM). However, observed weight loss is less than that predicted from quantified glycosuria, suggesting a compensatory increase in energy intake or a decrease in energy expenditure. Studies using dual-energy X-ray absorptiometry (DEXA) have suggested most body weight change is due to loss of adipose tissue, but organ-specific changes in fat content (eg, liver, skeletal muscle) have not been determined. In this randomised, double-blind, placebo-controlled crossover study, we aim to study the compensatory changes in energy intake, eating behaviour and energy expenditure accompanying use of the SGLT2 inhibitor, dapagliflozin. Additionally, we aim to quantify changes in fat distribution using MRI, in liver fat using proton magnetic resonance spectroscopy ((1)H-MRS) and in central nervous system (CNS) responses to food images using blood oxygen level dependent (BOLD) functional MRI (fMRI). METHODS AND ANALYSIS: This outpatient study will evaluate the effect of dapagliflozin (10 mg), compared with placebo, on food intake and energy expenditure at 7 days and 12 weeks. 52 patients with T2DM will be randomised to dapagliflozin or placebo for short-term and long-term trial interventions in a within participants, crossover design. The primary outcome is the difference in energy intake during a test meal between dapagliflozin and placebo. Intake data are collected automatically using a customised programme operating a universal eating monitor (UEM). Secondary outcomes include (1) measures of appetite regulation including rate of eating, satiety quotient, appetite ratings (between and within meals), changes in CNS responses to food images measured using BOLD-fMRI, (2) measures of energy expenditure and (3) changes in body composition including changes in liver fat and abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). ETHICAL APPROVAL: This study has been approved by the North West Liverpool Central Research Ethics Committee (14/NW/0340) and is conducted in accordance with the Declaration of Helsinki and the Good Clinical Practice (GCP). TRIAL REGISTRATION NUMBER: ISRCTN14818531. EUDRACT number 2013-004264-60

    Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis

    Get PDF
    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl's gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC)

    Characterization of brain blood flow and the amplitude of low-frequency fluctuations in major depressive disorder: A multimodal meta-analysis.

    Get PDF
    Background In healthy subjects, there is an association between amplitude of low-frequency fluctuations (ALFF) and regional cerebral blood flow (rCBF). To date, no published meta-analysis has investigated changes in the regional ALFF in medication-free depressed patients. Methods In this study, we aimed to explore whether resting-state rCBF and ALFF changes co-occur in the depressed brain without the potential confound of medication. Using signed differential mapping (SDM), we conducted two meta-analyses, one of rCBF studies and one of ALFF studies, involving medication-free patients with major depressive disorder (MDD). In addition, we conducted a multimodal meta-analysis to identify brain regions that showed abnormalities in both rCBF and ALFF. Results A total of 16 studies were included in this series. We identified abnormalities in resting-state rCBF and ALFF in the left insula in medication-free MDD patients compared with healthy controls (HC). In addition, we observed altered resting-state rCBF in the limbic-subcortical-cortical circuit and altered ALFF in the default mode network (DMN) and some motor-related brain regions. Limitations The analysis techniques, patient characteristics and clinical variables of the included studies were heterogeneous. Conclusions The conjoint alterations in ALFF and rCBF in the left insula may represent core neuropathological changes in medication-free patients with MDD and merit further studying

    Patterns of muscle coordination during dynamic glenohumeral joint elevation: An EMG study

    Get PDF
    The shoulder relies heavily on coordinated muscle activity for normal function owing to its limited osseous constraint. However, previous studies have failed to examine the sophisticated interrelationship between all muscles. It is essential for these normal relationships to be defined as a basis for understanding pathology. Therefore, the primary aim of the study was to investigate shoulder inter-muscular coordination during different planes of shoulder elevation. Twenty healthy subjects were included. Electromyography was recorded from 14 shoulder girdle muscles as subjects performed shoulder flexion, scapula plane elevation, abduction and extension. Cross-correlation was used to examine the coordination between different muscles and muscle groups. Significantly higher coordination existed between the rotator cuff and deltoid muscle groups during the initial (Pearson Correlation Coefficient (PCC) = 0.79) and final (PCC = 0.74) stages of shoulder elevation compared to the mid-range (PCC = 0.34) (p = 0.020–0.035). Coordination between the deltoid and a functional adducting group comprising the latissimus dorsi and teres major was particularly high (PCC = 0.89) during early shoulder elevation. The destabilising force of the deltoid, during the initial stage of shoulder elevation, is balanced by the coordinated activity of the rotator cuff, latissimus dorsi and teres major. Stability requirements are lower during the mid-range of elevation. At the end-range of movement the demand for muscular stability again increases and higher coordination is seen between the deltoid and rotator cuff muscle groups. It is proposed that by appreciating the sophistication of normal shoulder function targeted evidence-based rehabilitation strategies for conditions such as subacromial impingement syndrome or shoulder instability can be developed

    Anatomic Insights into Disrupted Small-World Networks in Pediatric Posttraumatic Stress Disorder.

    Get PDF
    Purpose To use diffusion-tensor (DT) imaging and graph theory approaches to explore the brain structural connectome in pediatric posttraumatic stress disorder (PTSD). Materials and Methods This study was approved by the relevant research ethics committee, and all participants’ parents or guardians provided informed consent. Twenty-four pediatric patients with PTSD and 23 control subjects exposed to trauma but without PTSD were recruited after the 2008 Sichuan earthquake. The structural connectome was constructed by using DT imaging tractography and thresholding the mean fractional anisotropy of 90 brain regions to yield 90 × 90 partial correlation matrixes. Graph theory analysis was used to examine the group-specific topologic properties, and nonparametric permutation tests were used for group comparisons of topologic metrics. Results Both groups exhibited small-world topology. However, patients with PTSD showed an increase in the characteristic path length (P = .0248) and decreases in local efficiency (P = .0498) and global efficiency (P = .0274). Furthermore, patients with PTSD showed reduced nodal centralities, mainly in the default mode, salience, central executive, and visual regions (P < .05, corrected for false-discovery rate). The Clinician-Administered PTSD Scale score was negatively correlated with the nodal efficiency of the left superior parietal gyrus (r = −0.446, P = .043). Conclusion The structural connectome showed a shift toward “regularization,” providing a structural basis for functional alterations of pediatric PTSD. These abnormalities suggest that PTSD can be understood by examining the dysfunction of large-scale spatially distributed neural networks
    corecore