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Anatomical insights into disrupted small-world networks in pediatric posttraumatic stress 

disorder  

Manuscript type: Original research 

Advances in Knowledge 

1. In brain MR images of pediatric patients with posttraumatic stress disorder (PTSD), we 

observed higher values of characteristic path length Lp (P=0.0248) and lower values of local 

efficiency Eloc (P=0.0498) and global efficiency Eglob (P=0.0274) relative to non-PTSD 

stress-exposed controls, indicating that the structural connectome of individuals with PTSD 

shifts toward ‘regularization.’ 

2. We found decreased nodal centralities (P < 0.05, false discovery rate corrected) in the salience 

network (SN) (ventrolateral prefrontal cortex, insular, putamen and thalamus), the central 

executive network (CEN) (dorsolateral prefrontal cortex and superior parietal gyrus), visual 

regions (lingual gyrus and middle occipital gyrus) and angular gyrus; by contrast we observed 

increased nodal centralities in the anterior cingulate cortex and inferior temporal gyrus. 

3. The PTSD-related subnetwork had 13 nodes and 21 edges, and the connections were mainly 

with the prefrontal-limbic-striatal, and ventral and dorsal visual systems. 

4. Clinician-Administered PTSD Scale score, reflecting PTSD illness severity, was negatively 

correlated with nodal efficiency of left superior parietal gyrus (P=0.043). 

 

Implications for Patient Care 



The brain regions of the salience network (ventrolateral prefrontal cortex, insular, putamen and 

thalamus) may be potential targets for future therapeutic interventions for PTSD. 

 

Summary statement 

Using deterministic tractography combined with graph analysis to investigate topological 

organization of the brain in pediatric PTSD, we found that the structural connectome showed a 

shift toward to ‘regularization’, as we previously found in the functional connectome.  



Abstract 

Purpose: To use DTI and graph theory approaches to explore the brain structural connectome in 

pediatric posttraumatic stress disorder (PTSD). 

Materials and Methods: This study was approved by the relevant research ethics committee, and 

all subjects’ parents/guardians provided informed consent. Twenty-four pediatric PTSD patients 

and 23 trauma-exposed non-PTSD controls were recruited after the 2008 Sichuan earthquake. 

The structural connectome was constructed using diffusion tensor imaging tractography, by 

thresholding the mean fractional anisotropy of 90 brain regions to yield 90×90 partial correlation 

matrixes. Graph theory analysis was used to examine the group-specific topological properties, 

and nonparametric permutation tests were used for group comparisons of topological metrics. 

Results: Both groups exhibited small-world topology. However, PTSD showed increase in the 

characteristic path length (Lp) (P=0.0248), and decrease in local efficiency (Eloc) (P=0.0498) and 

global efficiency (Eglob) (P=0.0274). Furthermore, PTSD showed reduced nodal centralities 

mainly in the default mode, salience, central executive and visual regions (P < 0.05, false 

discovery rate corrected). The Clinician-Administered PTSD Scale score was negatively 

correlated with nodal efficiency of left superior parietal gyrus (P=0.043). 

Conclusion: The structural connectome showed a shift toward ‘regularization’, providing a 

structural basis for functional alterations of pediatric PTSD. These abnormalities suggest that 

PTSD can be understood by examining the dysfunction of large-scale spatially distributed neural 

networks.  



Introduction 

  Brain structure can be interpreted as an integrated network using concepts of graph theory 

which quantify the whole brain as a single graph, comprising nodes linked by edges (1). 

Specifically, the small-world network pattern, which seems to have evolved to mediate 

high-efficiency parallel information transfer (2), has been used to define pathology in psychiatric 

disorders, including posttraumatic stress disorder (PTSD) (3-5). 

  PTSD is a trauma- and stressor-related disorder characterized by four symptom clusters: 

re-experience, avoidance, negative cognitions and mood, and arousal (6). Pediatric PTSD is not 

uncommon, the prevalence among children (12–17 years) being 3.7% for boys and 6.3% for girls 

(7). Childhood trauma is a severe stressor with multiple neurochemical and hormonal effects 

which can lead to lasting changes in brain structure and function (8). Children are particularly 

susceptible to PTSD (9), which may adversely influence brain development. Early interventions 

may help prevent brain changes.  

  Most early structural neuroimaging studies investigating the impact of childhood trauma on 

white matter (WM) integrity in children (10, 11) used manual tracing or volumetric morphometry. 

Diffusion tensor imaging (DTI) has since emerged as a powerful technique to assess WM tracts 

by exploiting the diffusion of tissue water. Using DTI we identified whole-brain WM 

microstructural abnormalities in pediatric PTSD (12), but we did not explore the neurocircuitry 

directly using connectivity analyses. We also applied graph theory to functional magnetic 

resonance imaging (MRI) data, finding that the functional connectome in pediatric PTSD is 

shifted toward ‘regularization’ (from a small-world to a more regular network) (4). As functional 



interaction is constrained by brain cortical anatomy (13), to fully understand function one must 

study its structural substrate directly. Based on our findings in the functional connectome (4), we 

hypothesized that in pediatric PTSD the structural connectome would show a similarly disrupted 

topological organization.  

  Our purpose was to use DTI and graph theory approaches to explore the brain structural 

connectome in pediatric posttraumatic stress disorder (PTSD). 

Materials and Methods  

Participants 

   This study was approved by the local research ethics committee. Each child’s parent/guardian 

was given a detailed information sheet, and then gave written consent. A total of 4,200 

earthquake survivors were screened by M.W. and X.W. 8-15 months after the 8.0 magnitude 

earthquake in Sichuan in May 2008. Each participant was interviewed and screened using the 

PTSD checklist (PCL) (14); those scoring >35 on PCL were given the Clinician-Administered 

PTSD Scale (CAPS) (15) by a psychiatrist (L.L., 31 years’ experience), of which those 

scoring >50 on CAPS were diagnosed with PTSD; those scoring <30 on PCL were considered 

non-PTSD trauma-exposed controls and were not assessed using CAPS (16). Inclusion criteria 

for all participants were: personal experience of the earthquake; personal witness of death, 

serious injury, or building collapse; age <18 years; IQ >80. This identified 161 PTSD patients 

and 99 trauma-exposed non-PTSD controls with similar demographic characteristics, lifestyle 

and earthquake experiences. Exclusion criteria were: psychiatric co-morbidities assessed using 

the Structured Clinical Interview for DSM-IV (17); history of psychiatric or neurological 



disorders (n=42); MRI contraindication (n=30); recent medication that might affect brain 

function (n=24); unavailability of key data (n=12); left-handedness (n=10); CAPS score >35 but 

<50 (n=8); history of or current brain injury (n=7). Twenty-eight drug-naïve first-episode PTSD 

patients and 26 trauma-exposed non-PTSD controls underwent MRI scanning. Head-motion 

artifacts excluded data from 4 PTSD and 3 controls. MRI data from 24 PTSD and 23 controls 

went forward for analysis. We have reported elsewhere some other MR data from some of these 

subjects. In (4) we reported resting state functional MRI data of 24 PTSD and 24 controls: that 

work investigated the brain functional connectome, while our current work explores the brain 

structural connectome. In (12) we reported DTI data of 27 PTSD and 24 controls: that work 

investigated the microstructural networks using voxel-based analysis, while our current work 

explores the structural network directly using connectivity analyses.  

Data Acquisition 

   MRI data were acquired on a 3T MRI system (EXCITE; General Electric) using a single-shot 

spin-echo echo planar image (SE-EPI) sequence, and included one high-resolution T1 scan and 

one DTI data scan. Foam padding was used to minimize head motion. A whole-brain 

high-resolution T1-weighted image was acquired using a sagittal three-dimensional spoiled 

gradient recall (SPGR) sequence with repetition time (TR) = 8.5 ms, echo time (TE) = 3.4 ms, 

inversion time (TI) = 400 ms, slice thickness = 1 mm, no inter-slice gap, 156 axial slices, matrix 

size = 256×256, field of view (FOV) = 24×24 cm2 and flip angle = 12°. The diffusion sensitizing 

gradients were applied along 15 non-collinear directions (b-value = 1000 s/mm2) together with 

an acquisition without diffusion weighting (b = 0). Imaging parameters were TR = 12000 ms, TE 



= 71.6 ms, number of excitations (NEX) = 2, slice thickness = 3 mm, 50 slices, 128×128 matrix 

and 24×24 cm2 FOV. The protocol included susceptibility-weighted imaging (SWI) which will 

be analyzed in a future study and fluid attenuated inversion recovery (FLAIR) sequences which 

were evaluated for clinical abnormalities by a neuroradiologist. A radiologist (L.S., with 3 years 

experience) evaluated and verified image quality. 

Data Pre-Processing and DTI-Based Structural Network Construction 

   All the image preprocessing and analyses were implemented using a pipeline tool for 

diffusion MRI (PANDA) (18). We (X.S. and D.L.) extracted the fractional anisotropy (FA) map 

of each subject in 3 steps: BET (skull removal), eddy correct and DTIFIT (building diffusion 

tensor models). We then registered the FA maps with the FMRIB FA template in standard MNI 

space using nonlinear registration.  

The automated anatomic labeling atlas (90 regions) was used to define the nodes of the WM 

network. PANDA uses the procedure proposed by Gong et al (19). Briefly, each of the individual 

FA images in native space was co-registered to its corresponding T1-weighted image using an 

affine transformation. Then the transformed T1-weighted images were non-linearly registered to 

the MNI space. The inverse transformations were obtained to the above two steps to transform 

the automated anatomic labeling atlas from MNI space to DTI native space. Thus, the individual 

cerebrum in native space was divided into 90 nodes corresponding to the automated anatomic 

labeling atlas. Each node represents a region of the DTI-based structural brain network. 

Deterministic tractography was performed to reconstruct whole brain WM tracts using the Fiber 

Assignment by Continuous Tracking algorithm (20). A tract was terminated if the turn angle 



was >45° or the fiber entered a voxel with FA <0.2 (21). We defined the averaged FA of the 

linking fibers for each connection. For each individual, we generated a symmetric 90×90 

network matrix in which each row/column represents a brain node/region and each element 

represents the averaged FA of the linking fibers between nodes. 

   Using the GRETNA toolbox we investigated the topological properties of brain networks at 

both the global and nodal level. The global level properties were of two kinds: small-world 

parameters [for definitions see (2)], including the clustering coefficient Cp, characteristic path 

length Lp [calculated as the harmonic mean distance between all possible pairs of regions to 

address the disconnected graphs dilemma(22)], normalized clustering coefficient γ, normalized 

characteristic path length λ, and small-worldness σ; and network efficiency parameters [for 

definitions see (23)], including the local efficiency Eloc and global efficiency Eglob. The nodal 

level properties were the nodal degree, nodal efficiency, and nodal betweenness.  

   For each network metric we calculated the area under the curve (AUC) over the sparsity 

range from S1 to Sn with an interval of ΔS, where S1 = 0.10, Sn = 0.34 and ΔS = 0.01. The AUC  

provides a summarized scalar for the topological characterization of brain networks independent 

of a single threshold selection. This approach uses a subject-specific correlation coefficient 

threshold to normalize all networks to the same number of nodes and edges, minimizing the 

effects of discrepancies in the overall correlation strength between groups, thereby enabling 

exploration of between-group differences in relative network organization (24), which is 

sensitive to topological alterations in brain disorders (4, 5, 24). 

Subdivision of the whole brain network 



  Each submatrix of PTSD comprised nodes that exhibited significant between-group 

differences in at least one of the three nodal centralities, and edges that linked between any two 

of these altered nodes, which were individually extracted from the original 90×90 matrix. For 

each binary (0 and 1) submatrix, the edges connecting every pair of regions were counted. Note 

that edges were used only to indicate the existence (1) or absence (0) of connections, not to 

represent the connectivity strength. Finally, we summarized the edges of all the PTSD patients to 

constitute the PTSD-related subnetwork. 

Statistical Analysis 

   For comparing clinical characteristics, statistical analyses were carried out using SPSS, 

version 16.0 (http://www.spss.com). Independent-sample t tests were used to compare 

quantitative variables. Qualitative variables were compared using a chi-squared test. The 

threshold for these statistical analyses was set at P <0.05. All tests were two-tailed.  

  Between-group differences of structural connectome were compared using nonparametric 

permutation tests, which had been described in detail previously (4).  

   After significant between-group differences were identified in the network metrics, partial 

correlations were computed to examine relationships between these metrics and the CAPS scores 

in the PTSD group, using age and gender as covariates. 

Results 

Demographic and Clinical Comparisons 

  There were no significant differences in age, gender, education or time since the trauma 

between PTSD and controls (P >0.05) (Table 1). 



Global Topological Organization of the Structural Connectome 

  In the defined threshold range, both the PTSD and the control group showed small-world 

topology: compared with controls, PTSD showed significantly increased Lp (P=0.0248), with no 

significant differences in Cp (P=0.5947), γ (P=0.1074), λ (P=0.1940) or σ (P=0.1052). With 

regards to network efficiency, PTSD showed significantly decreased Eloc (P=0.0498) and Eglob 

(P=0.0274) (Figure 1). 

Regional Topological Organization of the Structural Connectome 

  We identified the brain regions showing significant between-group differences in at least one 

nodal metric (P<0.05, FDR corrected). Compared with controls, PTSD showed decreased nodal 

centralities in the dorsolateral prefrontal cortex [left superior frontal gyrus, dorsolateral ], 

ventrolateral prefrontal cortex [left inferior frontal gyrus, opercular part and right inferior frontal 

gyrus, orbital part], right insular cortex, left lingual gyrus, left middle occipital gyrus, left 

superior parietal gyrus, bilateral angular gyrus, left putamen, left thalamus. Increased nodal 

centralities were found only in the left anterior cingulate cortex and left inferior temporal gyrus 

(Figure 2, Table 2). 

PTSD-related subnetwork 

  The PTSD-related subnetwork had 13 nodes and 21 connections (Figure 2), and the edges 

were mainly associated with the prefrontal-limbic-striatal, and ventral and dorsal visual systems.  

Relationships between Network Metrics and Clinical Variables 

  An outlier analysis by excluding one subject whose CAPS score was not in the range of 

x±2SD showed that CAPS was negatively correlated with nodal efficiency of left superior 



parietal gyrus (P=0.043) (Figure 3), but not with the other global and nodal metrics. 

Discussion 

  Deterministic tractography based on DTI confirmed small-world architecture in both groups, 

but PTSD showed a variety of differences relative to stress-exposed non-PTSD controls: at the 

global level, increased characteristic path length Lp and decreased local and global network 

efficiency, Eloc and Eglob; and regionally, decreased nodal centralities in the salience network 

(ventrolateral prefrontal cortex, insular, putamen, thalamus), central executive network  

(dorsolateral prefrontal cortex and superior parietal gyrus), visual regions (lingual gyrus and 

middle occipital gyrus) and default mode network (angular gyrus), and increased nodal 

centralities in the anterior cingulate cortex and inferior temporal gyrus. Furthermore, some key 

abnormalities are related to clinical severity: CAPS score was negatively correlated with nodal 

efficiency of left superior parietal gyrus. What do these abnormalities mean, and how do they 

affect function?   

At the global level, decreased Eloc makes the network less fault-tolerant: damage or discon-

nection of one region will dramatically affect connections with linked regions. Decreased Eglob 

may impair ability to combine specialized information from distributed brain regions affected by 

the loss of long-range connections (23). Furthermore, increased Lp represents a shift toward 

‘regularization’, in line with what we found in the functional connectome of pediatric PTSD (4) 

Previous studies have suggested that global brain network topology is mediated by myelination 

degree in children (25). Traumatic stress during childhood have adverse effects on brain 

maturation (11). Our evidence of alterations in structural connectome might therefore possibly 



implicate reduced myelination in pediatric PTSD. However, our previous and current 

connectome studies of pediatric PTSD reveal something different from the 'small-worldization ' 

in the functional connectome of adult PTSD (5). It is unclear why the transformation direction of 

brain network differs between adults and children. One possibility is that the neurobiological 

effects of stress vary at different developmental periods. For example, meta-analyses suggest that 

adult PTSD is associated with reduced hippocampal volume (26), while structural studies of 

pediatric PTSD reported no reduction of hippocampal volume, which may not become fully 

apparent until adulthood (27). Another alternative is that neuropsychological function of 

pediatric PTSD reveals a different pattern from adult PTSD (28). These hypotheses clearly 

require further testing in future studies, including longitudinal examination of children with 

PTSD into adulthood. 

   Turning to regional abnormalities, we found decreased nodal centrality mainly in the salience, 

central executive, and default mode networks (29). Several structural studies have focused on the 

corpus callosum following childhood trauma (30, 31), but by examining predefined regions of 

interest may have missed other important alterations in WM microstructure. Based on 

whole-brain analysis, Patel et al. invoke a ‘triple network’ model of PTSD, focusing on intrinsic 

connectivity networks (29). Our recent study of pediatric PTSD found that most of the abnormal 

brain regions belonged to two important networks: the default mode and salience networks (12). 

However, it did not directly explore the neurocircuitry using connectivity analyses, as the present 

study does. Recent graph analysis studies in PTSD also found abnormalities in the intrinsic 

connectivity network (3-5). These seem to play a role in the pathophysiology. For example, 



comparing remitted and persistent PTSD, a significant interaction effect in the pallidum (part of 

the salience network) suggests that treatment can alter network topology (32); furthermore, in 

functional MRI studies activation of lateral prefrontal cortex and insular cortex (components of 

the salience network) predicts response to PTSD treatment (33, 34). Alongside our own findings, 

this evidence suggests that the salience network could be a target for therapeutic intervention in 

pediatric PTSD.  

   We also found decreased nodal centrality in visual areas, which might be related to 

‘re-experience’ symptoms. This decreased nodal centrality, which has been demonstrated to be a 

reliable index of network integrity (35), may reflect disruption of white matter integrity in the 

current structural connectome, perhaps partially accounting for the disruption in the functional 

connectome (4). Specifically, the nodal centrality of left superior parietal gyrus was negatively 

correlated with CAPS. As the parietal regions are related to the fear response (36), impaired 

microstructural integrity of this region may contribute to arousal in PTSD. 

  Unexpectedly, we observed increased nodal centrality in anterior cingulate cortex and inferior 

temporal gyrus. As Du et al. found significantly greater anterior cingulate cortex activation in 

PTSD (37), we speculate that the nodal centrality increase in anterior cingulate cortex may be 

compensatory. The inferior temporal gyrus is the last cortical area along the ventral visual 

pathway (38), and our observation may be related to the hypervigilance and hyperprosexia that 

are characteristic of PTSD.  

  We identified a PTSD-related subnetwork composed of 13 brain regions with 21 connections, 

mainly involving the prefrontal-limbic-striatal, and ventral and dorsal visual pathways. This 



might be related to dysfunctional emotional and visual processing. Interestingly, the findings 

were mainly in the left hemisphere. Brain imaging studies have not shown consistent lateralized 

changes in PTSD. However, childhood trauma may set the stage for lateralized responses (10). 

Additional research will be needed to delineate the potential role of lateralized hemispheric 

deficits in PTSD. 

  This study has several limitations. Deterministic fiber tractography was used to define the 

edges of the structural connectome. The tracking procedure stops when it reaches regions with 

fiber crossings (20), which tends to reduce sensitivity. Probabilistic tractography, which requires 

a DTI sampling scheme at least 30 unique encoding directions (39), may be helpful to address 

this. A technical limitation is the comparatively low number (N=15) of gradient directions 

(chosen for practical reasons of patient comfort), which limits the quality of the available data. 

Future advanced DTI studies with more gradient directions are needed to improve the accuracy 

of tractography. The study is cross-sectional; longitudinal studies will be needed to define the 

gradual remodeling of the WM network in PTSD. The automated anatomic labeling template 

defines regions with a variety of sizes, which may bias nodal centrality; further studies are 

needed to determine which brain parcellation strategy is most appropriate for the characterization 

of network topology in PTSD. To control for possible stress-related brain alterations, we chose as 

controls the population who were also exposed to the earthquake but did not develop PTSD; 

non-traumatized healthy controls will need to be evaluated to provide more comprehensive 

insights into the pathology of PTSD. The P value of the negative correlation between the CAPS 

and nodal efficiency of left superior parietal gyrus was close to 0.05, so this analysis should be 



considered exploratory. Future studies with large sample size are needed. 

  In summary, the structural connectome of pediatric PTSD patients showed a shift toward 

‘regularization’, supporting the idea that this is a general pattern in pediatric PTSD. The 

widespread abnormalities were compatible with the notion that PTSD can be understood by 

investigating the dysfunction of large-scale, spatially distributed neural networks. This study 

provides a structural basis for the alterations of brain function in pediatric PTSD and might help 

to define early interventions which may attenuate adverse brain development. 
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Table 1. Demographics and clinical characteristics of the subjects a 

Variables PTSD(n=24) Non-PTSD(n=23) P value 

Age (years) b 13.0±1.7 (10-16) 13.2±1.3 (11-16) 0.77  

Gender (male/female) 10/14 11/12 0.53 

Years of education b 7.7±2.1 (6-12) 8.1±2.2 (6-14) 0.49 

Time since trauma (months)b 10.1±1.5 (8-12) 13.4±1.2 (10-15) 0.10 

PTSD checklist  54.9±5.6 (40-65) 23.9±3.0 (19-35) - 

CAPS 65.5±6.4 (60-86) - - 

a Data are presented as mean±SD (minimum-maximum) unless noted. 

bAge, years of education and time since trauma were reported by participants’ parents/guardians 

at the time of MR scanning. 

Abbreviation: PTSD, post-traumatic stress disorder; CAPS, Clinician-administered PTSD scale. 



Table 2. Regions showing altered nodal centralities in the pediatric PTSD group compared with 

the trauma-exposed non-PTSD control group 

  P Values  

Brain regions Nodal 

Degree 

Nodal 

Efficiency 

Nodal 

Betweenness 

PTSD < non-PTSD    

Left superior frontal gyrus, dorsolateral 0.0266 0.0250 0.0848 

Left inferior frontal gyrus, opercular part 0.5059 0.3043 0.0490 

Right inferior frontal gyrus, orbital part 0.2679 0.0840 0.0180 

Right insular cortex 0.2376 0.0258 0.8068 

Left lingual gyrus 0.0162 0.0182 0.0736 

Left middle occipital gyrus 0.2024 0.0402 0.5635 

Left superior parietal gyrus 0.0520 0.0484 0.2421 

Left angular gyrus 0.1858 0.0392 0.8780 

Right angular gyrus 0.0812 0.0168 0.2206 

Left putamen 0.4061 0.0450 0.3551 

Left thalamus 0.0344 0.0062 0.0800 

PTSD > non-PTSD    

Left anterior cingulate cortex 0.1420 0.3055 0.0444 

Left inferior temporal gyrus 0.1156 0.7181 0.0124 



Regions were considered abnormal in the pediatric PTSD patients if they exhibited significant 

between-group differences (P<0.05, FDR corrected) in at least one of the three nodal centralities 

(shown in bold font). 

Abbreviation: PTSD, posttraumatic stress disorder. 



Figure legends 

Figure 1. The differences in topological properties of the brain structural connectome between 

pediatric PTSD and trauma-exposed non-PTSD controls (nonparametric permutation test, P < 

0.05). Significant differences were found in Lp (P = 0.0248), Eglob (P = 0.0274) and Eloc (P = 

0.0498) in PTSD. PTSD: posttraumatic stress disorder; Eglob: global efficiency; Eloc: local 

efficiency; Lp: characteristic path length; Cp: clustering coefficient; λ: normalized characteristic 

path length; γ: normalized clustering coefficient; σ: small-worldness. 

 

Figure 2. The pediatric PTSD-related subnetwork. Every node denotes a brain region and every 

line denotes a connection. Different colored nodes represent different brain regions: purple, 

salience network; dark blue, central executive network; blue, default mode network; yellow, 

visual regions. L, left; R, right; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; ACC, 

anterior cingulate cortex; PUT, putamen; THA, thalamus; INS, insular; AG, angular gyrus; SPG, 

superior parietal gyrus; LG, lingual gyrus; MOG, middle occipital gyrus; ITG, inferior temporal 

gyrus. 

 

Figure 3. Scatter plots of nodal efficiency of left SPG against CAPS scores in pediatric PTSD. 

PTSD: posttraumatic stress disorder; CAPS: Clinician-Administered PTSD Scale; SPG, superior 

parietal gyrus. 

 


