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Obesity Complications: Challenges and Clinical Impact

Introduction
The spectrum of bodily movement spans sleep, 
bed rest and sitting through to light, moderate 
and vigorous physical activity (PA), all of which 

stress differing physiological pathways. Exercise 
physiology research has irrefutably demon-
strated the benefits of regular exercise. However, 
more recently researchers have turned their 
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implications
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Abstract
Background: Although the health benefits of regular physical activity and exercise are 
well established and have been incorporated into national public health recommendations, 
there is a relative lack of understanding pertaining to the harmful effects of physical 
inactivity. Experimental paradigms including complete immobilization and bed rest are 
not physiologically representative of sedentary living. A useful ‘real-world’ approach to 
contextualize the physiology of societal downward shifts in physical activity patterns is that of 
short-term daily step reduction.
Results: Step-reduction studies have largely focused on musculoskeletal and metabolic 
health parameters, providing relevant disease models for metabolic syndrome, type 2 diabetes 
(T2D), nonalcoholic fatty liver disease (NAFLD), sarcopenia and osteopenia/osteoporosis. 
In untrained individuals, even a short-term reduction in physical activity has a significant 
impact on skeletal muscle protein and carbohydrate metabolism, causing anabolic resistance 
and peripheral insulin resistance, respectively. From a metabolic perspective, short-term 
inactivity-induced peripheral insulin resistance in skeletal muscle and adipose tissue, 
with consequent liver triglyceride accumulation, leads to hepatic insulin resistance and a 
characteristic dyslipidaemia. Concomitantly, various inactivity-related factors contribute to a 
decline in function; a reduction in cardiorespiratory fitness, muscle mass and muscle strength.
Conclusions: Physical inactivity maybe particularly deleterious in certain patient populations, 
such as those at high risk of T2D or in the elderly, considering concomitant sarcopenia or 
osteoporosis. The effects of short-term physical inactivity (with step reduction) are reversible 
on resumption of habitual physical activity in younger people, but less so in older adults. 
Nutritional interventions and resistance training offer potential strategies to prevent these 
deleterious metabolic and musculoskeletal effects.
Impact: Individuals at high risk of/with cardiometabolic disease and older adults may be more 
prone to these acute periods of inactivity due to acute illness or hospitalization. Understanding 
the risks is paramount to implementing countermeasures.

Keywords: anabolic resistance, body composition, insulin resistance, liver fat, physical 
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attention to the other end of the spectrum, 
examining the harmful effects of physical inac-
tivity and sedentary behaviour, which more 
accurately represent Western societal lifestyle 
norms. Based on recent consensus,1 these key 
terms are defined as ‘performing insufficient 
amounts of moderate- and vigorous- intensity 
PA (MVPA), i.e. not meeting specified physical 
activity guidelines’ and ‘any waking behaviour 
characterised by an energy expenditure ⩽1.5 
METs’, respectively. It has become clear that 
the whole body, tissue-specific and cellular 
responses to physical inactivity and sedentary 
behaviour are not simply opposites of those to 
exercise. In fact, it has been suggested that the 
gene–lifestyle mismatch of today’s sedentariness 
compared with our evolutionary ancestors 
would mean exercise, or those who are ‘trained’, 
represents the normal biologically healthful 
state, whereas the lack of exercise or inactivity 
ultimately precipitates a diseased state.2

Much indirect evidence examining the detri-
mental effects of physical inactivity has come 
from epidemiological studies, although there is 
increasing interest in experimental studies of 
reduced human movement. Although bed rest,3 
limb immobilization4 and cessation of exercise in 
trained volunteers5 can provide valuable infor-
mation on the deleterious effects of inactivity, 
this review will not cover these extreme experi-
mental models as their translation to the more 
‘benign’ forms of inactivity in free-living envi-
ronments is difficult. This review will instead 
focus upon a more physiologically representative 
model of reduced PA, that of short-term step 
reduction, whereby daily activity patterns are 
modified to reduce PA levels and increase sed-
entary behaviour. We believe this model more 
adequately mimics acute illness and hospitaliza-
tion as well as the societal changes in PA pat-
terns that have occurred with related changes in 
technology, culture and work patterns.6 By scru-
tinizing this arguably more ecologically valid 
research model, we can gain improved mecha-
nistic insight into the metabolic and musculo-
skeletal dysfunction that occurs with real-life 
physical inactivity. Furthermore, it is important 
to consider our ageing society. Evidence has 
shown the harmful effects of lifelong sedentarism 
but acute periods of physical inactivity must also 
be considered as these are arguably more detri-
mental to the health of older adults when com-
pared to young people.

Epidemiological evidence on the benefits of 
physical activity
Since the seminal observations of Morris and col-
leagues in the 1950s, who demonstrated a higher 
risk of coronary heart disease in bus drivers (phys-
ically inactive, seated during their working day) 
versus bus conductors (physically active, walking 
up and down aisles and stairs), the health benefits 
of PA have become increasingly clear.7 Regular 
exercise and/or PA has been demonstrated to 
instigate beneficial effects in obesity, metabolic 
syndrome, type 2 diabetes (T2D), nonalcoholic 
fatty liver disease (NAFLD), cardiovascular dis-
ease (CVD), some cancers, and to reduce overall 
mortality, which is often independent of weight 
loss.8,9 It is also important in musculoskeletal 
health, maintaining bone and skeletal muscle 
mass as well as attenuating the major features of 
ageing.10,11 Thus, it is unsurprising that physical 
fitness, which ultimately is related to total PA lev-
els, is generally regarded as the single best predic-
tor of all-cause mortality, independent of disease 
state.12

Conversely, the relationship between physical 
inactivity and major noncommunicable diseases 
has been well-evidenced globally.13,14 Public 
health activity guidelines emphasize the impor-
tance of PA, recommending 150 min of moderate 
to vigorous physical activity (MVPA) per week, 
5 days per week. However, one-quarter of the UK 
population are failing to achieve even 30 min of 
moderate activity per week and 90% of the 
American population do not achieve PA recom-
mendations.15 In 2006/2007, the estimated cost of 
physical inactivity in the UK to the NHS was 
£900 million.16 Compared with the substantial 
body of work investigating the acute and chronic 
effects of exercise, relatively little is understood 
regarding the mechanistic changes that result from 
physical inactivity. PA in Western society has 
changed drastically since the Industrial Revolution, 
with ample evidence for a reduction in occupa-
tional energy expenditure as well as greater time 
spent sitting.17,18 Therefore, additional efforts 
need to be directed to better understand the dele-
terious effects of physical inactivity.

A brief overview of the harmful effects 
of low physical activity and sedentary 
behaviour
Physical inactivity and sedentary behaviour con-
tribute to low levels of energy expenditure and are 
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associated with many detrimental effects, includ-
ing loss of aerobic fitness and musculoskeletal and 
cognitive decline. Sedentary time can account for 
60% of waking hours (6–10 h/day) and behaviours 
such as TV viewing are associated with increased 
risk of all-cause and cardiovascular mortality inde-
pendent of smoking, hypertension, hypercholes-
terolemia and diet.19,20 Studies examining the 
physiological impact of ‘lack of human movement’ 
in contrast to physical activity/exercise, the two 
opposite ends of the activity spectrum (i.e. seden-
tary behaviour to MVPA), are not necessarily 
mutually exclusive. It is now clear that increased 
sedentary time is distinct from too little activity, 
and is itself associated with an independent 
increased risk of all-cause and cardiovascular mor-
tality.19 While the benefits of meeting the PA 
guidelines are not disputed, minimizing sedentary 
time is of vital importance. To elucidate the rela-
tionship between the apparently distinct catego-
ries of PA and sedentary time, Yates and colleagues 
studied ~2000 adults using accelerometry, catego-
rizing them into four groups: ‘Busy Bees’ – physi-
cally active and low sedentary time; ‘Sedentary 
Exercisers’ – physically active and high sedentary 
time; ‘Light Movers’ – physically inactive and low 
sedentary time; and ‘Couch Potatoes’ – physically 
inactive and high sedentary time.21 Being physi-
cally active was associated with a better anthropo-
metric and metabolic health profile whereas being 
sedentary independent of activity (Light Movers) 
is associated with lower HDL (high-density lipo-
protein) cholesterol (a traditional cardiovascular 
risk factor). Sedentary time is associated with neg-
ative health outcomes, independent of PA22 and 
MVPA.23 Furthermore, levels of physical activity/
fitness are correlated with liver and visceral fat 
accumulation in individuals at high risk of T2D24 
and normal-weight healthy adults.25

Metabolic effects of physical inactivity/step 
reduction
Bed rest and disuse/unloading models induce del-
eterious metabolic effects, including increased 
insulin resistance and inflammation, as well as 
alterations to insulin signalling, adipose tissue 
lipolysis and mitochondrial pathways.3–5 Likewise, 
step reduction can lead to a number of metabolic 
maladaptations in healthy adults (Table 1), 
though direct comparisons between studies can 
be difficult due to differences in the baseline PA 
level (ranging from ‘highly active’ being >6000 to 
>10,000 steps/day), the level of ‘low’ step count 

(ranging from <1500 to <5000), the duration of 
reduced activity (ranging from 3 to 14 days) and 
the additional effect of overfeeding.26,27 When 
focusing on studies in which individuals transi-
tion from well-defined high levels of PA (~10,000 
steps/day) to low (~1500 steps/day) for ⩾14 days, 
the results are striking, especially when one con-
siders the volunteers were young, healthy 
adults.28–30 Two studies have administered step 
reduction with overfeeding,26,27 with an amplified 
effect.

Reduced ambulatory activity for 14 days demon-
strates a significant accretion of adipose tissue 
and ectopic fat deposition. In the first study to 
communicate this finding (10 young, healthy 
males), intraabdominal fat mass significantly 
increased from 693 ml to 740 ml, with no changes 
in total body fat mass.30 Subsequent studies have 
reported findings in agreement; one example 
states an increase in body fat (predominately 
central) and magnetic resonance spectroscopy 
(MRS) measured liver fat was observed in 45 
young, healthy males and females following a 
similar step-reduction protocol.28 Interestingly, 
individuals who were genetically predisposed to 
T2D (first-degree relatives) gained a greater rela-
tive amount of android (central compartment 
measured by dual-energy X-ray absorptiometry, 
or DXA) fat, when compared with those who 
were not. Given that central adiposity and liver 
fat deposition have been causally related to insu-
lin resistance,33 it is perhaps unsurprising that 
glucose metabolism is also perturbed in all these 
studies, typically with maintenance of normal 
glucose profiles but hyperinsulinaemia.28–30 
Insulin resistance has been primarily linked to 
impaired peripheral insulin resistance (inability 
of skeletal muscle to increase glucose uptake) 
rather than hepatic insulin resistance (an inability 
to inhibit endogenous glucose production) in 
both free-living28,29 and bed-rest34 models of 
reduced PA. Taken together, the evidence sug-
gests that step reduction causes peripheral insu-
lin resistance in skeletal muscle and adipose 
tissue, but while fat is accumulated centrally and 
in the liver, hepatic insulin resistance remains 
unchanged (in the short term).

At a molecular level, 14 days of step reduction 
results in a significant decrease in insulin-simu-
lated skeletal muscle Akt phosphorylation.29 Under 
normal physiological conditions, p-Akt would 
elicit a ‘downstream’ phosphorylation of AS160 

https://journals.sagepub.com/home/tae


Therapeutic Advances in Endocrinology and Metabolism 10

4 journals.sagepub.com/home/tae

Ta
bl

e 
1.

 A
 s

um
m

ar
y 

of
 in

te
rv

en
tio

n 
st

ud
ie

s 
ex

am
in

in
g 

th
e 

ef
fe

ct
s 

of
 r

ed
uc

ed
 p

hy
si

ca
l a

ct
iv

ity
 a

nd
 in

cr
ea

se
d 

se
de

nt
ar

y 
be

ha
vi

ou
r 

in
 y

ou
ng

er
 a

du
lt

s 
(1

8–
65

 y
ea

rs
 

ol
d)

. T
he

 ta
bl

e 
ou

tl
in

es
 th

e 
pa

rt
ic

ip
an

t c
oh

or
ts

 (i
nc

lu
di

ng
 a

ge
 a

nd
 B

M
I),

 d
et

ai
ls

 o
f t

he
 in

ac
tiv

ity
 in

te
rv

en
tio

n 
(3

–1
4 

da
ys

 in
 d

ur
at

io
n)

, a
lo

ng
 w

ith
 k

ey
 r

es
ul

ts
 in

 te
rm

s 
of

 c
ar

di
or

es
pi

ra
to

ry
 fi

tn
es

s,
 m

et
ab

ol
ic

 c
ha

ng
es

, b
od

y 
co

m
po

si
tio

n 
an

d 
an

y 
m

ec
ha

ni
st

ic
 m

ea
su

re
m

en
ts

.

R
ef

er
en

ce
P

ar
ti

ci
pa

nt
s

In
ac

ti
vi

ty
Ef

fe
ct

s

C
ar

di
or

es
pi

ra
to

ry
 

fi
tn

es
s

M
et

ab
ol

ic
B

od
y 

co
m

po
si

ti
on

M
ec

ha
ni

st
ic

B
ow

de
n 

D
av

ie
s 

et
 a

l.28

14
 d

ay
s 

SR
;

14
 d

ay
s 

re
su

m
in

g 
ac

tiv
ity

45
 y

ou
ng

 a
du

lt
s 

(3
7 

ye
ar

s,
 2

7 
B

M
I)

<
2 

h 
ex

/w
4 

da
ys

 s
cr

ee
ni

ng

A
ct

iv
ity

 b
y 

Se
ns

eW
ea

r.
St

ep
s/

da
y 
↓:

B
L 

12
,7

80
,

SR
 2

49
5

↔
 H

ab
itu

al
 d

ie
t

Tr
ea

dm
ill

 V̇
O

2 
pe

ak
:

↓ 
0.

2 
m

l/
m

in
↓ 

2.
2 

m
l/

m
in

/k
g

O
G

TT
:

↑ 
in

su
lin

 A
U

C
↓ 

pe
ri

ph
er

al
 in

su
lin

 
se

ns
iti

vi
ty

↔
 h

ep
at

ic
 in

su
lin

 
re

si
st

an
ce

D
XA

 a
nd

 M
R

S:
↑ 

fa
t m

as
s,

 
ce

nt
ra

l a
nd

 li
ve

r
↓ 

le
g 

le
an

 m
as

s
↔

 a
rm

s 
or

 tr
un

k

N
ot

 y
et

 
re

po
rt

ed

O
ls

en
 e

t a
l.30

14
 d

ay
s 

SR
Yo

un
g 

m
en

 <
2 

h 
ex

/w
1 

w
ee

k 
sc

re
en

in
g

St
ud

y 
1:

 n
 =

 8
 

(2
7 

ye
ar

s,
 2

3 
B

M
I)

St
ud

y 
2:

 n
 =

 0
 (2

4 
ye

ar
s,

 2
2 

B
M

I)

A
ct

iv
ity

 b
y 

pe
do

m
et

er
.

St
ep

s/
da

y 
↓:

St
ud

y 
1:

 B
L 

62
03

, S
R

 1
39

4
St

ud
y 

2:
 B

L 
10

,5
01

, S
R

 1
34

4
↔

 H
ab

itu
al

 d
ie

t

N
ot

 m
ea

su
re

d
O

G
TT

:
↑ 

in
su

lin
 A

U
C

O
FT

T:
↑ 

in
su

lin
 A

U
C

, c
-p

ep
tid

e 
an

d 
TG

D
XA

 a
nd

 M
R

I:
↔

 fa
t m

as
s

↑ 
in

tr
aa

bd
om

in
al

 
fa

t
↓ 

fa
t-

fr
ee

 m
as

s

N
ot

 m
ea

su
re

d

K
ro

gh
-M

ad
se

n 
et

 a
l.29

14
 d

ay
s 

SR

10
 y

ou
ng

 m
en

 (2
4 

ye
ar

s,
 2

2 
B

M
I)

<
2 

h 
ex

/w
1 

w
ee

k 
sc

re
en

in
g

A
ct

iv
ity

 b
y 

pe
do

m
et

er
 a

nd
 

A
ct

ih
ea

rt
.

St
ep

s/
da

y 
↓:

B
L 

10
,5

01
, S

R
 1

34
4

↔
 H

ab
itu

al
 d

ie
t

C
yc

le
 V̇

O
2 m

ax
:

↓ 
7.

2%
 m

l/
m

in
↓ 

6.
6%

 m
l/

m
in

/k
g

H
-E

 c
la

m
p:

↓ 
pe

ri
ph

er
al

 in
su

lin
 

se
ns

iti
vi

ty
↔

 h
ep

at
ic

 g
lu

co
se

 
pr

od
uc

tio
n

↔
 fa

st
in

g 
bl

oo
ds

D
XA

:
↔

 fa
t m

as
s

↓ 
le

g 
le

an
 m

as
s

↔
 a

rm
s 

or
 tr

un
k

↓p
-A

kt
/

to
ta

lA
kt

 a
t 

4 
h 

in
su

lin
 

st
im

ul
at

ed
↔

 m
R

N
A

K
nu

ds
en

 e
t a

l.26

14
 d

ay
s 

SR
+

 o
ve

rf
ee

di
ng

;
14

 d
ay

s 
re

su
m

in
g 

ac
tiv

ity

9 
yo

un
g 

m
en

 (2
4 

ye
ar

s,
 2

2 
B

M
I)

4 
da

ys
 s

cr
ee

ni
ng

A
ct

iv
ity

 b
y 

pe
do

m
et

er
 a

nd
 

A
ct

ih
ea

rt
.

St
ep

s/
da

y 
↓:

B
L 

10
,2

78
,

SR
 1

52
1

D
ie

ta
ry

 in
ta

ke
 ↑

:
27

62
–4

19
7 

kc
al

/d
ay

C
yc

le
 V̇

O
2 m

ax
:

↓3
.8

%
 m

l/
m

in
↓3

.4
%

 m
l/

m
in

/k
g

H
-E

 c
la

m
p:

↓ 
pe

ri
ph

er
al

 in
su

lin
 

se
ns

iti
vi

ty
↔

 h
ep

at
ic

 g
lu

co
se

 
pr

od
uc

tio
n

3 
h 

O
G

TT
:

↑ 
in

su
lin

 A
U

C
↔

 g
lu

co
se

 A
U

C
↓ 

M
at

su
da

↔
 fa

st
in

g 
bl

oo
ds

↑ 
le

pt
in

 a
nd

 a
di

po
ne

ct
in

D
XA

:
↑ 

to
ta

l b
od

y 
m

as
s,

 B
M

I, 
fa

t 
m

as
s,

 a
nd

ro
id

 
an

d 
gy

no
id

↔
 fa

t-
fr

ee
 m

as
s

M
R

I: 
↑ 

vi
sc

er
al

 
fa

t

N
ot

 m
ea

su
re

d

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tae


KA Bowden Davies, S Pickles et al.

journals.sagepub.com/home/tae 5

R
ef

er
en

ce
P

ar
ti

ci
pa

nt
s

In
ac

ti
vi

ty
Ef

fe
ct

s

C
ar

di
or

es
pi

ra
to

ry
 

fi
tn

es
s

M
et

ab
ol

ic
B

od
y 

co
m

po
si

ti
on

M
ec

ha
ni

st
ic

D
ix

on
 e

t a
l.31

7 
da

ys
 S

R
M

id
dl

e 
ag

ed
 m

en
;

9 
le

an
 (5

2 
ye

ar
s,

 
24

 B
M

I) 
an

d 
9 

ov
er

w
ei

gh
t (

49
 

ye
ar

s,
 2

9 
B

M
I)

1 
w

ee
k 

sc
re

en
in

g

A
ct

iv
ity

 b
y 

A
ct

ih
ea

rt
.

B
L 

hi
gh

ly
 a

ct
iv

e 
>

30
 m

in
 

5/
w

,
SR

 <
40

00
 s

te
ps

 fo
r 

1 
w

ee
k.

↔
 H

ab
itu

al
 d

ie
t

Tr
ea

dm
ill

 V̇
O

2 m
ax

 
(n

ot
 r

ep
or

te
d 

pr
e 

an
d 

po
st

)

O
G

TT
:

↑ 
gl

uc
os

e 
an

d 
in

su
lin

 
A

U
C

s
↑ 

TG
 b

ut
 n

ot
 H

D
L,

 L
D

L
↔

 fa
st

in
g 

bl
oo

ds

D
XA

 (n
ot

 r
ep

or
te

d 
pr

e 
an

d 
po

st
)

N
ot

 m
ea

su
re

d

W
al

hi
n 

et
 a

l.27

7 
da

ys
 S

R
+

 o
ve

rf
ee

di
ng

26
 y

ou
ng

 m
al

es
 

(2
5 

ye
ar

s,
 2

4 
B

M
I)

A
ct

iv
ity

 b
y 

A
ct

ih
ea

rt
.

St
ep

s/
da

y 
↓ 

w
ith

 ↑
 d

ie
ta

ry
 

in
ta

ke
 +

50
%

 (S
U

R
); 

ad
di

tio
na

l s
ub

gr
ou

p 
w

ith
 

ex
er

ci
se

 (S
U

R
+

EX
).

SU
R

: 1
2,

56
2 

to
 3

52
0 

an
d 

SU
R
+

EX
 1

0,
54

4 
to

 3
69

0 
st

ep
/d

ay

Tr
ea

dm
ill

 V̇
O

2 m
ax

 
(n

ot
 r

ep
or

te
d 

pr
e 

an
d 

po
st

)

O
G

TT
:

↑ 
SU

R
 in

su
lin

 A
U

C
↔

 S
U

R
+

EX
 in

su
lin

 A
U

C
↑ 

H
O

M
A

-I
R

D
XA

:
↑ 

to
ta

l b
od

y 
m

as
s 

an
d 

le
an

 m
as

s
↔

 fa
t m

as
s

A
lt

er
ed

 
ex

pr
es

si
on

 o
f 

ke
y 

ge
ne

s 
an

d 
pr

ot
ei

ns
 in

 
ad

ip
os

e 
tis

su
e

M
ik

us
 e

t a
l.32

3 
da

ys
 s

te
p 

re
du

ct
io

n

12
 y

ou
ng

 a
du

lt
s 

(2
9 

ye
ar

s,
 2

4 
B

M
I)

1 
w

ee
k 

sc
re

en
in

g.
Ex

cl
us

io
n:

 
‘in

vo
lv

ed
 in

 
co

m
pe

tit
iv

e 
sp

or
tin

g 
ev

en
ts

’

A
ct

iv
ity

 b
y 

pe
do

m
et

er
 a

nd
 

EE
/P

A
 m

on
ito

r.
St

ep
s/

da
y 
↓:

B
L 

12
,9

56
, S

R
 4

31
9

↔
 H

ab
itu

al
 d

ie
t

V̇O
2 m

ax
(n

ot
 r

ep
or

te
d 

pr
e 

an
d 

po
st

)

C
G

M
:

↑ 
po

st
pr

an
di

al
 g

lu
co

se
↔

 p
re

-g
lu

co
se

 o
r 

av
er

ag
e

O
G

TT
:

↑ 
in

su
lin

 A
U

C
↔

 g
lu

co
se

 A
U

C
↓ 

M
at

su
da

↑ 
H

O
M

A
-I

R

D
XA

 (n
ot

 r
ep

or
te

d 
pr

e 
an

d 
po

st
)

N
ot

 m
ea

su
re

d

A
U

C
, a

re
a 

un
de

r 
cu

rv
e;

 B
L,

 b
as

el
in

e;
 B

M
I, 

bo
dy

 m
as

s 
in

de
x;

 C
G

M
, c

on
tin

uo
us

 g
lu

co
se

 m
on

ito
ri

ng
; D

XA
, d

ua
l-

en
er

gy
 X

-r
ay

 a
bs

or
pt

io
m

et
ry

; E
E,

 e
ne

rg
y 

ex
pe

nd
itu

re
; E

X,
 e

xe
rc

is
e;

 
ex

/w
, e

xe
rc

is
e 

pe
r 

w
ee

k;
 h

, h
ou

r;
 H

D
L,

 h
ig

h-
de

ns
ity

 li
po

pr
ot

ei
n;

 H
-E

, h
yp

er
in

su
lin

em
ic

–e
ug

ly
ce

m
ic

; H
O

M
A

-I
R

, h
om

eo
st

at
ic

 m
od

el
 a

ss
es

sm
en

t o
f i

ns
ul

in
 r

es
is

ta
nc

e;
 L

D
L,

 lo
w

-d
en

si
ty

 
lip

op
ro

te
in

; M
R

I, 
m

ag
ne

tic
 r

es
on

an
ce

 im
ag

in
g;

 m
R

N
A

, m
es

se
ng

er
 R

N
A

; M
R

S,
 m

ag
ne

tic
 r

es
on

an
ce

 s
pe

ct
ro

sc
op

y;
 O

G
TT

, o
ra

l g
lu

co
se

 to
le

ra
nc

e 
te

st
; P

A
, p

hy
si

ca
l a

ct
iv

ity
; p

-A
kt

, 
ph

os
ph

or
yl

at
ed

 p
ro

te
in

 k
in

as
e 

B
; S

R
, s

te
p 

re
du

ct
io

n;
 S

U
R

, e
ne

rg
y 

su
rp

lu
s;

 T
G

, t
ri

gl
yc

er
id

e;
 to

ta
l A

kt
, t

ot
al

 p
ro

te
in

 k
in

as
e 

B
; V̇

O
2, 

m
ax

im
um

 o
xy

ge
n 

up
ta

ke
; ↑

 s
ig

ni
fic

an
t i

nc
re

as
e;

 ↓
 

si
gn

ifi
ca

nt
 d

ec
re

as
e;

 ↔
 d

id
 n

ot
 s

ig
ni

fic
an

tl
y 

ch
an

ge
.

Ta
bl

e 
1.

 (
C

on
tin

ue
d)

https://journals.sagepub.com/home/tae


Therapeutic Advances in Endocrinology and Metabolism 10

6 journals.sagepub.com/home/tae

(Akt substrate protein) after contractile activity to 
promote the translocation of GLUT4 glucose 
transporters to the plasma membrane. However, 
despite blunted p-Akt, AS160 did not significantly 
change but GLUT4 was not measured. 
Interestingly, plasma inflammatory markers such 
as TNF and IL-6 also did not change.29 A plausi-
ble explanation is that the short-term step-reduc-
tion protocol in healthy adults did not elicit a great 
enough stimulus for muscle inflammation and also 
offers some explanation for the dissociation 
between Akt/AS160. Walhin and colleagues found 
that 7 days of step reduction significantly altered 
the expression patterns of key metabolic genes 
involved with nutritional homeostasis, metabolism 
and insulin action (upregulation of SREBP-1C, 
FAS, GLUT4; downregulation of PDK4, IRS2, 
HSL) and the ratio between pAMPK/AMPK in 
adipose tissue.27 Interestingly, 45 min of daily exer-
cise during energy-matched step reduction attenu-
ated these changes. Collectively, this could suggest 
the following paradigm: a transition to physical 
inactivity causes a reduction in skeletal muscle 
insulin sensitivity, perhaps due to altered insulin 

signalling, contributing to a repartitioning of 
energy substrates into alternative tissues, increas-
ing central fat accumulation and ectopic storage 
within the liver and other organs, exacerbating 
insulin resistance (Figure 1).35,36 As peripheral 
insulin resistance progresses, continued ectopic fat 
accumulation within the liver and pancreas pre-
cipitates development of the metabolic syndrome, 
a progressive decline in beta cell function and, ulti-
mately, T2D.37

Ageing and musculoskeletal health
Maintenance of musculoskeletal health is multi-
factorial, affected by lifestyle (e.g. nutritional sta-
tus), biological (e.g. inflammation) and 
psychosocial factors (e.g. fear of falling).38 As well 
as the obvious stimulatory effects of feeding, phys-
ical activity/exercise is essential in preserving mus-
cle mass; both amino acids and contractile activity 
represent major stimuli for muscle protein syn-
thesis, which is the primary regulated variable 
influencing muscle mass. Previous guidelines rec-
ommended 0.8 g/kg of dietary protein intake per 

Habitual activity Chronic sedentary behaviour
Insulin sensitive / 

metabolically healthy
Insulin resistant /

metabolic syndrome 

Liver 
triglyceride 

Liver 
triglyceride

Adipose tissue Adipose tissueAdipose tissue

Glucose

Glucose

Glycogen 

Physical activity, 
AMPK activation

Sedentary, lack of 
AMPK activation

↑

↑
↑

De novo 
lipogenesis

↑glucose 
uptake

glucose uptake

↑ VLDL export
↑ serum TG

↑ NEFA flux
↑ serum NEFA

muscle mass

Figure 1. A two-part schematic representing the metabolic effects of habitual physical activity (left) and 
chronic sedentary behaviour (inactivity; right).
Left: a consequence of sedentary behaviour is diminished AMPK activation and glucose uptake into skeletal muscle, 
inducing insulin resistance. The plasma glucose (not transported into muscle) provides a substrate for de novo lipogenesis 
in adipose tissue and liver. Consequently, there is expansion of adipose tissue mass, intrahepatic lipid accumulation and 
increased lipid export from the liver as VLDL triacylglycerol particles and serum triacylglycerol with induction of systemic 
insulin resistance.
Right: being habitually active stimulates AMPK activation and glucose uptake into skeletal muscle; insulin sensitivity is 
therefore preserved and less glucose is diverted to metabolically unfavourable depots.
AMPK, AMP-activated protein kinase; NEFA, nonesterified fatty acids; TG, triglyceride; VLDL, very low-density lipoproteins.
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day for all individuals; revised consensus guide-
lines from sarcopenia working groups now recom-
mend 1–1.2 g/kg per day in individuals over the 
age of 65.39 A combination of exercise training 
and dietary supplementation with essential amino 
acids (EAA) has been shown to be synergistic for 
increasing muscle protein synthesis (MPS).40

Skeletal muscle mass declines with age at ~10% 
per decade over the age of 50 years, although with 
significant heterogeneity relating to both genetic 
and lifestyle factors.41 Sarcopenia, defined as a loss 
of muscle strength/power with ageing due to 
changes in the quality and quantity of muscle tis-
sue, becomes increasingly prevalent with advanc-
ing age; 13–24% under 70 years but >50% over 
80 years.42 While both muscle mass and muscle 
function are important for the health and well-
being of older adults, the loss of muscle mass tradi-
tionally precedes decrements in muscle function 
and thus could represent an early sign of a poten-
tial progressive slide into frailty.41 Therefore, it is 
important to understand the cause of, and mitigat-
ing factors towards, this loss of muscle tissue with 
age. While it has traditionally been viewed of as an 
insipid, linear loss of muscle mass and/or function, 
the Catabolic Crisis model proposes that these ‘lin-
ear’ age-related changes may actually be punctu-
ated and/or accelerated by intermittent periods of 
immobility associated with ill health and/or life-
style changes (Figure 2). Importantly, a resump-
tion of normal PA after a period of reduced activity 
may not restore normal glucose metabolism and, 
in the case of muscle loss, rates of MPS in older 
adults,43 which highlights the deleterious and per-
sistent negative effects of inactivity in this popula-
tion. Nevertheless, a decline in muscle mass and/or 
quality may precipitate a loss of an older adult’s 
physiological reserve, which could subsequently 
increase the risk of falls and fractures, reduce func-
tional independence and predispose them to more 
hospital admissions and ultimately spells of seden-
tary behaviour.44 Hence, sarcopenia is associated 
with physical disability and impaired quality of life 
while the concomitant poor functional ability is 
associated with reduced survival.44–46

Cuthbertson and colleagues described the phenom-
enon of anabolic resistance, whereby skeletal muscle 
of older adults has a decreased sensitivity and 
responsiveness of MPS to EAA compared to that of 
younger adults, as a primary contributing factor for 
the age-related loss of muscle mass.49 At a molecu-
lar level, this is associated with decrements in the 

expression and activity of components of anabolic 
signalling pathways. While the anabolic resistance 
of ageing is likely multifactorial, it is well estab-
lished that extreme models of inactivity (i.e. bed 
rest and limb immobilization) impair muscle pro-
tein metabolism and contribute to significant and 
rapid decreases in muscle mass.50 For example, 
Paddon-Jones and colleagues showed that young, 
healthy adults lose 2% of their muscle mass with 
28 days of bed rest.51 However, this effect is 
more pronounced in the older population, with 
Kortebein and colleagues showing a 7% decrease 
in just 10 days of bed rest.52 Aside from older 
patients having lower baseline muscle mass, bed 
rest in older people is associated with an acceler-
ated rate of loss of muscle mass with more variable 
recovery rates.41 To put this in context, the decline 
in muscle mass after 10 days bed rest is equivalent 
to 7 years of age-related sarcopenia.41,52 These 
extreme models of physical inactivity clearly dem-
onstrated that a lack of muscle contractile activity 
is a precipitating cause of ‘anabolic resistance’ and 
muscle atrophy. However, the utility of these 
models for explaining the impact of low PA, that is 
~2000–9000 steps per day53,54 in the average older 
adult, may need to be revisited.

Musculoskeletal effects of inactivity/step 
reduction
Studies exploring the effects of step reduction on 
muscle protein turnover have focused on MPS 
rather than muscle breakdown as decreased MPS 
is generally regarded as the dominant mechanism 
causing more prolonged (i.e. >10 days) disuse 
muscle atrophy.55 The few studies conducted in 
older adults are summarized in Table 2. Although 
physical inactivity is associated with ~7% reduc-
tion in V̇O2 peak in healthy young adults, no data 
are available from the studies of older adults.28,29 
Significant muscle atrophy is seen with only 14 
days of step reduction in both young and older 
adults;28,29,56 the reported 1–4% losses in muscle 
mass are both striking and concerning, consider-
ing that sarcopenic muscle loss is estimated to 
occur at ~0.8% per year.50

It was first demonstrated that an acute bout of 
walking (45 min or the equivalent of ~5000 steps) 
was sufficient to increase the anabolic sensitivity of 
older skeletal muscle to dietary amino acids,58 sug-
gesting a significant factor in the ‘normal’ age-
related anabolic resistance may be related to the 
level of habitual PA. In order to more clearly define 
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the role of inactivity (but not complete immobiliza-
tion) on postprandial rates of MPS, Breen and col-
leagues56 employed a step-reduction protocol 
whereby 10 healthy older adults (age 72 ± 1 year) 
restricted their daily steps from ~6000/day to 
~1500/day for 14 days. Although there was no 
impact of this step reduction on basal rates of 
myofibrillar protein synthesis, the feeding-induced 
stimulation of myofibrillar protein synthesis after 
ingestion of 25 g of protein was blunted by ~26% 
after the 14 days. This inactivity-induced anabolic 
resistance was also accompanied by the progres-
sion of insulin resistance, evidence of systemic low-
grade inflammation (i.e. increased C-reactive 
protein and tumour necrosis factor-α) and a loss of 
~0.6 kg of leg fat-free mass in only 2 weeks,56 the 

latter of which was confirmed in a similar step-
reduction study in older adults.57 Although there 
was no impact on muscle function (i.e. isometric 
strength or short physical performance battery 
score) in either study,56,57 the loss of muscle mass, 
which typically precedes reductions in muscle 
function,59 suggests this ‘benign’ form of inactivity 
could be an accelerating factor in the development 
and progression of sarcopenia.

The coincidence of muscle loss and body fat accu-
mulation with ageing has led to the term ‘sarco-
penic obesity’, which may present additional 
complications for the development of anabolic 
resistance and subsequent muscle loss.60 For 
instance, obesity alone has been associated with a 
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a quicker rate with retraining
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impact of physical inactivity 
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Figure 2. A two-part schematic representing the Catabolic Crisis model proposed by English and Paddon-
Jones47 (upper figure) and the reduced activity models (young versus old) proposed by Perkin and colleagues48 
(lower figure).
Upper: the Catabolic Crisis model proposes that rather than the traditional linear model of age-related muscle loss 
(sarcopenia), instead episodes of acute illness or injury can accelerate muscle loss (indicated as a nadir on the graph) and 
are followed by periods of incomplete recovery.
Lower: the reduced activity model suggests that older individuals compared to younger individuals tend to have less muscle 
mass and may lose muscle mass at a quicker rate (when subject to periods of inactivity), and recovery may be more variable. 
These two theories contextualize the importance of avoiding periods of prolonged inactivity, particularly in older adults.
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Table 2. A summary of intervention studies examining the effects of reduced physical activity and increased sedentary behaviour in 
younger adults (>65 years old). The table outlines the participant cohorts (including age, BMI), details of the inactivity intervention 
(3–14 days in duration), along with key results in terms of muscle function, metabolic changes, body composition and any muscle 
protein turnover.

Reference Participants Inactivity Effects

Muscle 
function

Metabolic Body 
composition

Muscle protein 
turnover

Breen et al.56

14 days SR
10 older adults 
(72 years, 29 
BMI)
>3500 step/day
3 days 
screening

Activity by 
SenseWear.
Steps/day ↓:
BL 5962,
SR 1413
↔ Habitual 
diet

↔ Muscle 
strength 
(isometric 
MVC)
↔ Physical 
function 
(SPPB)

OGTT:
↑ glucose and 
insulin AUCs
↓ Matsuda
↑ HOMA-IR
↑ TNF-α and 
CRP
↔ IL-6 and 
C-peptide

DXA:
↔ total body 
mass and total 
fat mass
↑ trunk fat 
mass
↓ leg fat-free 
mass

↓ 26% 
postprandial MPS
↔ basal and 
postabsorptive 
MPS
↔ intramuscular 
signalling 
proteins

Devries et al.57

14 days SR + RT ± 
nutritional 
supplement

30 older men 
(70 years, 27 
BMI)
>3500 step/day
3 groups 
(n = 10)

Activity by 
SenseWear.
Steps/day ↓:
BL 6273–7714,
SR 1161–1288

↔ Muscle 
strength 
(isometric 
MVC) SR
↔ Muscle 
strength 
(1RM) SR but 
↑ in SR + RT

Metabolic 
assessments 
were made 
but not 
compared to 
BL

DXA:
↔ total fat 
mass/% and 
total fat-free 
mass
↓ leg fat-free 
mass SR

MPS measured 
but not compared 
against BL.
Nutritional 
supplement had 
no effect.
MPS lower in SR 
than SR + RT.

McGlory et al.43

14 days SR;
14 days resuming 
activity

22 overweight 
prediabetic 
older adults
(69 years, 27 
BMI)
>3500 step/day
1 week 
screening

Activity by 
SenseWear.
Steps/day ↓:
BL 7362
SR 991
↔ Habitual 
diet

↔ Muscle 
strength 
(isometric 
MVC)

OGTT:
↑ glucose and 
insulin AUCs
↓ Matsuda
↑ HOMA-IR
↑ TNF-α, CRP 
and IL-6

DXA:
↔ total body 
fat % and lean 
mass

↓ 12% MPS, did 
not restore after 
resuming activity

1RM, one-repetition maximum; AUC, area under curve; BL, baseline; BMI, body mass index; CRP, C-reactive protein; DXA, dual-energy X-ray 
absorptiometry; h, hour; HOMA-IR, homeostatic model assessment of insulin resistance; IL-6, interleukin 6; MPS, muscle protein synthesis; MVC, 
maximum voluntary contraction; OGTT, oral glucose tolerance test; RT, resistance training; SPPB, short physical performance battery; SR, step 
reduction; TNF-α, tumour necrosis factor-alpha; w, week; ↑ significant increase; ↓ significant decrease; ↔ did not significantly change.

blunted muscle protein synthetic response to die-
tary protein ingestion,61 although this finding is 
not universal.62 However, cross-sectional data 
suggest that inactivity in conjunction with obesity 
can exacerbate the anabolic resistance of ageing.63 
This was further demonstrated in an elegant study 
by McGlory and colleagues,64 who examined the 
impact of 2 weeks of physical inactivity (i.e. reduc-
tion in daily steps from ~6500/day to ~1300/day) 
in overweight, prediabetic older men and women. 
The 14 days of step reduction were associated 
with a ~12% reduction in free-living rates of 
myofibrillar protein synthesis, which may reflect 
both a reduced stimulus for muscle remodelling 
(i.e. inactivity) and an attenuated free-living post-
prandial muscle protein synthetic response. While 

there was no detectable change in leg lean mass or 
muscle fibre cross-sectional area (CSA), the sus-
tained suppression of integrated rates of MPS on 
resumption of habitual PA would be a concern for 
the subsequent development and/or progression 
of sarcopenia. The effects of PA/ inactivity on 
skeletal muscle protein turnover are summarized 
in Figure 3.

Countermeasures during periods of step 
reduction
Acute metabolic65 and free-living66 studies provide a 
rationale for amino acid/protein supplementation 
to support MPS in older adults. However, the abil-
ity to enhance muscle mass and/or function with 
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the chronic consumption of protein/amino acid-
based supplements is somewhat equivocal in oth-
erwise healthy adults,67–69 which is generally related 
to the heterogeneity of study designs and popula-
tions. Theoretically, exercise training eliciting suf-
ficient anabolic adaptions, combined with efficient 
nutritional strategies, would be synergistic for 
maintaining muscle mass in older populations. 
However, not all populations will be capable of 
exercise interventions, and in these subpopulations 
efficient nutritional strategies alone may minimize 
loss in muscle mass.

A variety of countermeasures involving exercise/
PA and nutritional strategies have been tested for 
their ability to protect individuals from decondi-
tioning and attenuate inactivity-induced muscle 
atrophy. Studies in habitual settings and bed rest 
studies have been reviewed.69,70 This section of 
the review focuses on the few studies that have 
investigated countermeasures during acute step 
reduction, which are summarized in Table 3.

Effects of exercise during step reduction
Walhin and colleagues assessed the impact of 
45 min of daily aerobic exercise, compared with 

no additional exercise, on participants undergo-
ing a period of step reduction: the addition of the 
daily aerobic exercise prevented changes in insu-
lin sensitivity, although energy expenditure and 
caloric intake remained matched between the two 
groups.27 In a single study conducted by Devries 
and colleagues57 and Moore and colleagues71 the 
effects of a unilateral resistance training protocol 
in older adults undergoing 14 days of step reduc-
tion was examined. The within-participant model 
compared low-load resistance exercise (three ses-
sions per week) in a randomly selected exercised 
leg with the contralateral leg that did not exercise. 
Six sessions of low-load, high-effort resistance 
exercise during 14 days of step reduction main-
tained leg lean mass, muscle function and a robust 
feeding-induced rise in MPS in postabsorptive 
and postprandial states.57 Further, the exercised 
leg had greater muscle fibre CSA, satellite cell 
content and capillarization.71 It was suggested 
that these results are due to the ability of low-
load, high-effort resistance exercise to enhance 
motor unit (and thus muscle fibre) recruitment.72 
Taken together these studies highlight the impor-
tance of performing exercise even during brief 
periods of physical inactivity for preserving ana-
bolic and insulin sensitivity, and thus muscle 

Skeletal muscle atrophy

Physical  inactivity
Inflammation Ageing

Insulin 
resistance 

Anabolic 
resistance 

Blunted 
MPS

Increased 
MPB

Microvascular 
impairment/

reduced nutrient 
delivery 

Reduced satellite 
cell 

activation/muscle 
regeneration 

Figure 3. A schematic to summarize the reported effects of physical inactivity on skeletal muscle atrophy. 
Physical inactivity and ageing have both been linked with increased inflammation and anabolic resistance; 
microvascular impairment also has a role due to insulin resistance; and with blunted MPS and increased MPB 
skeletal muscle atrophy is exacerbated. Physical inactivity can also cause reduced satellite cell activation, also 
linked to atrophy.
MPB, muscle protein breakdown; MPS, muscle protein synthesis.
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mass and metabolic function. Studies looking at 
different types of concomitant exercise during 
periods of step reduction in older men (resistance 
training prior to step reduction, exercise three 
times per day during the step-reduction period 
and a control) are also under way.48

Effects of nutritional strategies during step 
reduction
The study by Devries and colleagues57 also exam-
ined whether citrulline, as an arginine and nitric 

oxide precursor, could attenuate muscle anabolic 
resistance accompanying step reduction. 
Participants were randomized to one of three 
dietary intervention groups (n = 10 per group) 
differentiated by the type of protein and free 
amino acids included in the product: (1) ‘whey 
isolate’ − 5 g glycine/day during step reduction 
and 20 g isolated whey protein plus 15 g glycine 
on the infusion trial day; (2) ‘micellar-whey’ − 
5 g glycine/day during step reduction and 20 g 
micellar-whey protein plus 15 g glycine on the 

Table 3. A summary of intervention studies examining the effects of reduced physical activity with countermeasures to reduce 
metabolic and musculoskeletal effects. The table outlines the participant cohorts (including age, BMI), details of the inactivity 
intervention and countermeasure used, along with key results.

Reference Participants Inactivity Countermeasure Main findings

Moore et al.71

14 days SR
+ RT

14 male older 
adults
(71 year, 25% body 
fat)
>3500 step/day

Activity by SenseWear.
Steps/day ↓:
BL 7011,
SR <1500

SR only
versus
SR+EX:
6 sessions of unilateral low-
load, high-effort resistance 
exercise (i.e. three sessions/
week with at least 48 h 
between sessions) with a 
randomly selected leg

RT associated with 
greater muscle fibre 
CSA, satellite content 
and capillarization.

Devries et al.57*
14 days SR + RT ± 
nutritional 
supplement

30 older men (70 
years, 27 BMI)
>3500 step/day
3 groups (1) 
whey isolate, (2) 
micellar-whey, 
(3) micellar-
whey + citrulline
(n = 10 each group)

Activity by SenseWear.
Steps/day ↓:
BL 6273–7714,
SR 1161–1288

Dietary intervention during 
SR.
Throughout SR, participants 
performed 6 sessions of 
unilateral low-load, high-
effort resistance exercise (3 
sessions/week with at least 
48 h between sessions) with a 
randomly selected leg

MPS similar across 
groups so dietary 
groups were collapsed 
to compare SR and 
SR+RT legs.
MPS lower in SR 
than SR+RT in 
postabsorptive and 
postprandial states.

Walhin et al.27*
7 days SR
+ overfeeding
± aerobic exercise

26 young males
(25 year, 24 BMI)

Activity by Actiheart.
BL highly active >30 min 
3× week,
Steps/day ↓ with ↑ dietary 
intake +50% (SUR); 
additional subgroup with 
exercise (SUR+EX).
SUR: 12,562–3520 and 
SUR+EX 10,544–3690 
step/day

SUR (n = 14)
versus
SUR+EX (n = 12):
45 min of daily treadmill 
running at 70% of maximum 
oxygen uptake

Vigorous-intensity 
exercise counteracted 
most effects of short-
term overfeeding 
and under-activity 
at whole-body level 
and in adipose tissue, 
despite standardized 
energy surplus

Perkin et al.48

14 days 
SR + exercise

30 older men
(aged 65–80 years)

Activity by pedometer.
Steps/day ↓:
BL >3500,
SR <1500

SR only (n = 10)
versus
Progressive RT group (n = 10)
versus
‘Exercise snacking’ home-
based group (n = 10)

Not yet reported

BL, baseline; BMI, body mass index; CSA, cross-sectional area; EX, exercise; h, hour; MPS, muscle protein synthesis; RT, resistance training; SR, 
step reduction; SUR, energy surplus; * studies also listed in Tables 1 and 2 but described in a different context; ↑ significant increase; ↓ significant 
decrease.
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infusion trial day; and (3) ‘micellar-whey + cit-
rulline’ − 5 g citrulline/day during step reduction 
and 20 g micellar-whey protein plus 5 g citrulline 
on the infusion trial day. None of the nutritional 
strategies induced a differential MPS following 
step reduction. Based on these results and previ-
ous work,73 citrulline does not act to increase 
MPS in healthy older adults at rest, following 
exercise or following a period of inactivity.

Areas for further investigation, and public 
health implications
The studies reviewed here typically recruit small 
samples of healthy adults that have only minimally 
investigated age and gender-specific differences, 
which may limit the clinical generalizability of the 
results on the impact of inactivity in acute or 
chronic illness. In clinical populations we might 
expect to observe a greater decompensation, mak-
ing these changes more clinically significant. In 
patients who already have metabolic complica-
tions (e.g. NAFLD, T2D), the impact of step 
reduction might lead to changes that would be less 
easily reversed and contribute to further metabolic 
decline. Equally, older adults who have subopti-
mal musculoskeletal health might see similar 
effects. Alarmingly, data from 239 older adults 
(~77 years) admitted to hospital with an acute ill-
ness reported that mean daily step count was only 
740,74 supporting the experimental design 
reviewed here. The longest duration of a step-
reduction study is 14 days; studies of greater dura-
tion would be more relevant to the wider 
population, given the chronic nature of sedentary 
behaviour, although the practical implementation 
of such a protocol in a research setting is challeng-
ing. In clinical trials including control groups that 
are physically inactive, progressive metabolic dete-
rioration was apparent; however, meeting current 
PA guidelines was associated with preventing 
this.75 Furthermore, higher levels of PA have been 
positively associated with improved sleep quality76 
and insomnia,77 which are linked to metabolic 
outcomes. There is still much to be understood 
about the maladaptations to sedentary behaviour, 
but this should be a key research priority for health 
care providers and policy makers.

Summary
The largest public health gains are potentially 
from encouraging very sedentary people (in soci-
ety or a clinical setting) to be more physically 

active, along with education about the health risks 
of sedentary behaviours (such as prolonged screen 
time). Effective and practical measures must be 
developed to counteract the deleterious metabolic 
and musculoskeletal effects of recurrent or 
chronic periods of physical inactivity.
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