104 research outputs found

    Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland

    Get PDF
    Background Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C-4 grasses and C-3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). Results We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C-3, compared to C-4, plants. Conclusions This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.This work was partially supported by a Higher Degree Research Scholarship from the Hawkesbury Institute for the Environment at Western Sydney University. Additional funding came from a project grant to SAP and SNJ from the Hermon Slade Foundation (P00021516) and funding provided by Western Sydney University. The Western Sydney University Library provided financial assistance for open access publication fees. Documen

    Deleterious coding variants in multi-case families with non-syndromic cleft lip and/or palate phenotypes

    Get PDF
    8 páginasNonsyndromic Cleft Lip and/or Palate (NSCLP) is regarded as a multifactorial condition in which clefting is an isolated phenotype, distinguished from the largely monogenic, syndromic forms which include clefts among a spectrum of phenotypes. Nonsyndromic clefting has been shown to arise through complex interactions between genetic and environmental factors. However, there is increasing evidence that the broad NSCLP classification may include a proportion of cases showing familial patterns of inheritance and contain highly penetrant deleterious variation in specific genes. Through exome sequencing of multi-case families ascertained in Bogota, Colombia, we identify 28 non-synonymous single nucleotide variants that are considered damaging by at least one predictive score. We discuss the functional impact of candidate variants identified. In one family we find a coding variant in the MSX1 gene which is predicted damaging by multiple scores. This variant is in exon 2, a highly conserved region of the gene. Previous sequencing has suggested that mutations in MSX1 may account for ~2% of NSCLP. Our analysis further supports evidence that a proportion of NSCLP cases arise through monogenic coding mutations, though further work is required to unravel the complex interplay of genetics and environment involved in facial clefting

    Musical events and perceptual ecologies

    Get PDF
    This paper, followed by two responses, discusses the application of ecological theory to an understanding of a number of issues in the aesthetics of music. It argues for an understanding of music as based in event perception, with an expanded conception of the sources that are specified by those events. Building on the theory of affordances, it considers the limitations of an information theoretic conception of musical complexity, discusses the importance of perceptual learning (understood as shaping by a structured environment) in understanding the affordances of music for different listeners, and raises the challenging problem of the terms in which musical materials might be appropriately described. The apparent tension between ecological and aesthetic positions—in which adaptation and accommodation seem to be at odds with a modernist aesthetic perspective which prioritizes the unsettling and defamiliarizing function of art—is confronted, before the paper concludes with some observations about different disciplinary perspectives on aesthetics, and matters of specificity and generality

    Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP

    Get PDF
    Antidepressants demonstrate modest response rates in the treatment of major depressive disorder (MDD). Despite previous genome-wide association studies (GWAS) of antidepressant treatment response, the underlying genetic factors are unknown. Using prescription data in a population and family-based cohort (Generation Scotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of (a) antidepressant treatment resistance and (b) stages of antidepressant resistance by inferring antidepressant switching as non-response to treatment. GWAS were conducted separately for antidepressant treatment resistance in GS:SFHS and the Genome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed (meta-analysis n = 4213, cases = 358). For stages of antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-set enrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We did not identify any significant loci, genes or gene sets associated with antidepressant treatment resistance or stages of resistance. Significant positive genetic correlations of antidepressant treatment resistance and stages of resistance with neuroticism, psychological distress, schizotypy and mood disorder traits were identified. These findings suggest that larger sample sizes are needed to identify the genetic architecture of antidepressant treatment response, and that population-based observational studies may provide a tractable approach to achieving the necessary statistical power

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions

    Get PDF
    Major depression is a debilitating psychiatric illness that is typically associated with low mood and anhedonia. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximize sample size, we meta-analyzed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 genesets associated with depression, including both genes and gene pathways associated with synaptic structure and neurotransmission. An enrichment analysis provided further evidence of the importance of prefrontal brain regions. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant after multiple testing correction. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding etiology and developing new treatment approaches

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    The genomic basis of parasitism in the Strongyloides clade of nematodes.

    Get PDF
    Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism
    corecore