101 research outputs found

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat AutĂČnoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro de InvestigaciĂłn en Ciencias Veterinarias y AgronĂłmicas. Instituto de PatobiologĂ­a; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin

    Liposarcoma: exploration of clinical prognostic factors for risk based stratification of therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognosis and optimal treatment strategies of liposarcoma have not been fully defined. The purpose of this study is to define the distinctive clinical features of liposarcomas by assessing prognostic factors.</p> <p>Methods</p> <p>Between January 1995 and May 2008, 94 liposarcoma patients who underwent surgical resection with curative intent were reviewed.</p> <p>Results</p> <p>Fifty patients (53.2%) presented with well differentiated, 22 (23.4%) myxoid, 15 (16.0%) dedifferentiated, 5 (5.3%) round cell, and 2 (2.1%) pleomorphic histology. With the median 14 cm sized of tumor burden, about half of the cases were located in the retroperitoneum (46.8%). Seventy two (76.6%) patients remained alive with 78.1%, and 67.5% of the 5- and 10-year overall survival (OS) rates, respectively. Low grade liposarcoma (well differentiated and myxoid) had a significantly prolonged OS and disease free survival (DFS) with adjuvant radiotherapy when compared with those without adjuvant radiotherapy (5-year OS, 100% vs 66.3%, P = 0.03; 1-year DFS, 92.9% <it>vs </it>50.0%, respectively, P = 0.04). Independent prognostic factors for OS were histologic variant (P = 0.001; HR, 5.1; 95% CI, 2.0 – 12.9), and margin status (P = 0.005; HR, 4.1; 95% CI, 1.6–10.5). We identified three different risk groups: group 1 (n = 66), no adverse factors; group 2, one or two adverse factors (n = 28). The 5-year OS rate for group 1, and 2 were 91.9%, 45.5%, respectively.</p> <p>Conclusion</p> <p>The histologic subtype, and margin status were independently associated with OS, and adjuvant radiotherapy seems to confer survival benefit in low grade tumors. Our prognostic model for primary liposarcoma demonstrated distinct three groups of patients with good prognostic discrimination.</p

    Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice

    Get PDF
    This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs), could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish

    Full text link
    • 

    corecore