1,682 research outputs found

    Non-L\'evy mobility patterns of Mexican Me'Phaa peasants searching for fuelwood

    Full text link
    We measured mobility patterns that describe walking trajectories of individual Me'Phaa peasants searching and collecting fuelwood in the forests of "La Monta\~na de Guerrero" in Mexico. These one-day excursions typically follow a mixed pattern of nearly-constant steps when individuals displace from their homes towards potential collecting sites and a mixed pattern of steps of different lengths when actually searching for fallen wood in the forest. Displacements in the searching phase seem not to be compatible with L\'evy flights described by power-laws with optimal scaling exponents. These findings however can be interpreted in the light of deterministic searching on heavily degraded landscapes where the interaction of the individuals with their scarce environment produces alternative searching strategies than the expected L\'evy flights. These results have important implications for future management and restoration of degraded forests and the improvement of the ecological services they may provide to their inhabitants.Comment: 15 pages, 4 figures. First version submitted to Human Ecology. The final publication will be available at http://www.springerlink.co

    Small Worlds and Semantic Network Growth in Typical and Late Talkers

    Get PDF
    Network analysis has demonstrated that systems ranging from social networks to electric power grids often involve a small world structure-with local clustering but global ac cess. Critically, small world structure has also been shown to characterize adult human semantic networks. Moreover, the connectivity pattern of these mature networks is consistent with lexical growth processes in which children add new words to their vocabulary based on the structure of the language-learning environment. However, thus far, there is no direct evidence that a child's individual semantic network structure is associated with their early language learning. Here we show that, while typically developing children's early networks show small world structure as early as 15 months and with as few as 55 words, children with language delay (late talkers) have this structure to a smaller degree. This implicates a maladaptive bias in word acquisition for late talkers, potentially indicating a preference for “oddball” words. The findings provide the first evidence of a link between small-world connectivity and lexical development in individual children

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L

    Low correlation between visit-to-visit variability and 24-h variability of blood pressure

    Get PDF
    Visit-to-visit variability (VVV) of clinic systolic blood pressure (SBP) has been associated with cardiovascular disease risk. Given the need for obtaining blood pressure (BP) at multiple visits to calculate VVV, substituting BP variability from ambulatory blood pressure monitoring (ABPM) may be a practical alternative. We assessed the correlation between VVV of BP and BP variability from ABPM using data from 146 untreated, mostly normotensive participants (mean age 47.9 years) in a substudy of the ongoing Masked Hypertension Study. VVV of SBP and diastolic blood pressure (DBP) was estimated by the standard deviation (SDvvv) and average real variability (ARVvvv) from 6 study visits over a median of 216 days. ABPM data were used to calculate the day-night SD (SDdn) and the ARV of SBP and DBP over 24 hours (ARV24). For SBP, the mean SDvvv and SDdn were 6.3 (SD=2.5) and 8.8 (SD=1.8) mmHg, respectively, and mean ARVvvv and ARV24 were 7.2 (SD=3.2) and 8.4 (SD=2.1) mmHg, respectively. The Spearman correlation coefficient between SDvvv and SDdn of SBP was rs=0.25 and between ARVvvv and ARV24 was rs=0.17. Participants in the highest quartile of SDdn of SBP were 1.66 (95% CI: 0.93 – 2.75) times more likely to be in the highest quartile of SDvvv of SBP. The observed-to-expected ratio between the highest quartiles of ARVvvv and ARV24 of SBP was 0.89 (95% CI: 0.41 – 1.69). The correlations for SDvvv and SDdn and ARVvvv and ARV24 of DBP were minimal. These data suggest VVV and 24-hour variability are weakly correlated and not interchangeable

    In-situ evidence for dextral active motion at the Arabia-India plate boundary

    No full text
    International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep

    Gene set analysis for longitudinal gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations.</p> <p>Results</p> <p>We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified.</p> <p>Conclusions</p> <p>The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website <url>http://ndinbre.org/programs/bioinformatics.php</url>. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085.</p

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    The development of descending projections from the brainstem to the spinal cord in the fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the fetal sheep is a favoured model for studying the ontogeny of physiological control systems, there are no descriptions of the timing of arrival of the projections of supraspinal origin that regulate somatic and visceral function. In the early development of birds and mammals, spontaneous motor activity is generated within spinal circuits, but as development proceeds, a distinct change occurs in spontaneous motor patterns that is dependent on the presence of intact, descending inputs to the spinal cord. In the fetal sheep, this change occurs at approximately 65 days gestation (G65), so we therefore hypothesised that spinally-projecting axons from the neurons responsible for transforming fetal behaviour must arrive at the spinal cord level shortly before G65. Accordingly we aimed to identify the brainstem neurons that send projections to the spinal cord in the mature sheep fetus at G140 (term = G147) with retrograde tracing, and thus to establish whether any projections from the brainstem were absent from the spinal cord at G55, an age prior to the marked change in fetal motor activity has occurred.</p> <p>Results</p> <p>At G140, CTB labelled cells were found within and around nuclei in the reticular formation of the medulla and pons, within the vestibular nucleus, raphe complex, red nucleus, and the nucleus of the solitary tract. This pattern of labelling is similar to that previously reported in other species. The distribution of CTB labelled neurons in the G55 fetus was similar to that of the G140 fetus.</p> <p>Conclusion</p> <p>The brainstem nuclei that contain neurons which project axons to the spinal cord in the fetal sheep are the same as in other mammalian species. All projections present in the mature fetus at G140 have already arrived at the spinal cord by approximately one third of the way through gestation. The demonstration that the neurons responsible for transforming fetal behaviour in early ontogeny have already reached the spinal cord by G55, an age well before the change in motor behaviour occurs, suggests that the projections do not become fully functional until well after their arrival at the spinal cord.</p
    corecore