124 research outputs found
A Sensory Bias Has Triggered the Evolution of Egg-Spots in Cichlid Fishes
Although, generally, the origin of sex-limited traits remains elusive, the sensory exploitation hypothesis provides an explanation for the evolution of male sexual signals. Anal fin egg-spots are such a male sexual signal and a key characteristic of the most species-rich group of cichlid fishes, the haplochromines. Males of about 1500 mouth-brooding species utilize these conspicuous egg-dummies during courtship – apparently to attract females and to maximize fertilization success. Here we test the hypothesis that the evolution of haplochromine egg-spots was triggered by a pre-existing bias for eggs or egg-like coloration. To this end, we performed mate-choice experiments in the basal haplochromine Pseudocrenilabrus multicolor, which manifests the plesiomorphic character-state of an egg-spot-less anal fin. Experiments using computer-animated photographs of males indeed revealed that females prefer images of males with virtual (‘in-silico’) egg-spots over images showing unaltered males. In addition, we tested for color preferences (outside a mating context) in a phylogenetically representative set of East African cichlids. We uncovered a strong preference for yellow, orange or reddish spots in all haplochromines tested and, importantly, also in most other species representing more basal lines. This pre-existing female sensory bias points towards high-quality (carotenoids-enriched) food suggesting that it is adaptive
RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes
<p>Abstract</p> <p>Background</p> <p>PCR-based surveys have shown that guppies (<it>Poecilia reticulata</it>) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system.</p> <p>Results</p> <p>Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, <it>SWS2B </it>and <it>RH2-2</it>, accounted for >85% of all visual-opsin transcripts in the eye, excluding <it>RH1</it>. This relative abundance (RA) value dropped to about 65% in adults, as <it>LWS-A180 </it>expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed <it>LWS-S180 </it>upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' <it>SWS2-LWS </it>gene cluster is negatively correlated with distance from a candidate locus control region (LCR).</p> <p>Conclusions</p> <p>Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. <it>LWS </it>upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving <it>LWS </it>upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the <it>SWS2-LWS </it>gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-λ<sub>max </sub>assignments for all photoreceptor types in the cone mosaic.</p
The Function of Anal Fin Egg-Spots in the Cichlid Fish Astatotilapia burtoni
Color and pigmentation patterns of animals are often targets of sexual selection because of their role in communication. Although conspicuous male traits are typically implicated with intersexual selection, there are examples where sex-specific displays play a role in an intrasexual context, e.g. when they serve as signals for aggression level and/or status. Here, we focus on the function of a conspicuous male ornament in the most species-rich tribe of cichlid fishes, the haplochromines. A characteristic feature of these ca. 1500 species are so-called egg-spots in form of ovoid markings on the anal fins of males, which are made up of carotenoid based pigment cells. It has long been assumed that these yellow, orange or reddish egg-spots play an important role in the courtship and spawning behavior of these maternal mouth-brooding fishes by mimicking the eggs of a conspecific female. The exact function of egg-spots remains unknown, however, and there are several hypotheses about their mode of action. To uncover the function of this cichlid-specific male ornament, we used female mate choice experiments and a male aggression test in the haplochromine species Astatotilapia burtoni. We manipulated the number and arrangement of egg-spots on the anal fins of males, or removed them entirely, and tested (1) female preference with visual contact only using egg-traps, (2) female preference with free contact using paternity testing with microsatellites and (3) male aggression. We found that females did not prefer males with many egg-spots over males with fewer egg-spots and that females tended to prefer males without egg-spots over males with egg-spots. Importantly, males without egg-spots sired clutches with the same fertilization rate as males with egg-spots. In male aggression trials, however, males with fewer egg-spots received significantly more attacks, suggesting that egg-spots are an important signal in intrasexual communication
The Effects of Dietary Carotenoid Supplementation and Retinal Carotenoid Accumulation on Vision-Mediated Foraging in the House Finch
BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina). CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments
Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata)
BACKGROUND: The visual system is important for animals for mate choice, food acquisition, and predator avoidance. Animals possessing a visual system can sense particular wavelengths of light emanating from objects and their surroundings and perceive their environments by processing information contained in these visual perceptions of light. Visual perception in individuals varies with the absorption spectra of visual pigments and the expression levels of opsin genes, which may be altered according to the light environments. However, which light environments and the mechanism by which they change opsin expression profiles and whether these changes in opsin gene expression can affect light sensitivities are largely unknown. This study determined whether the light environment during growth induced plastic changes in opsin gene expression and behavioral sensitivity to particular wavelengths of light in guppies (Poecilia reticulata). RESULTS: Individuals grown under orange light exhibited a higher expression of long wavelength-sensitive (LWS) opsin genes and a higher sensitivity to 600-nm light than those grown under green light. In addition, we confirmed that variations in the expression levels of LWS opsin genes were related to the behavioral sensitivities to long wavelengths of light. CONCLUSIONS: The light environment during the growth stage alters the expression levels of LWS opsin genes and behavioral sensitivities to long wavelengths of light in guppies. The plastically enhanced sensitivity to background light due to changes in opsin gene expression can enhance the detection and visibility of predators and foods, thereby affecting survival. Moreover, changes in sensitivities to orange light may lead to changes in the discrimination of orange/red colors of male guppies and might alter female preferences for male color patterns. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0679-z) contains supplementary material, which is available to authorized users
Sexual Display and Mate Choice in an Energetically Costly Environment
Sexual displays and mate choice often take place under the same set of environmental conditions and, as a consequence, may be exposed to the same set of environmental constraints. Surprisingly, however, very few studies consider the effects of environmental costs on sexual displays and mate choice simultaneously. We conducted an experiment, manipulating water flow in large flume tanks, to examine how an energetically costly environment might affect the sexual display and mate choice behavior of male and female guppies, Poecilia reticulata. We found that male guppies performed fewer sexual displays and became less choosy, with respect to female size, in the presence of a water current compared to those tested in still water. In contrast to males, female responsive to male displays did not differ between the water current treatments and females exhibited no mate preferences with respect to male size or coloration in either treatment. The results of our study underscore the importance of considering the simultaneous effects of environmental costs on the sexual behaviors of both sexes
Supplementation of Male Pheromone on Rock Substrates Attracts Female Rock Lizards to the Territories of Males: A Field Experiment
Background: Many animals produce elaborated sexual signals to attract mates, among them are common chemical sexual signals (pheromones) with an attracting function. Lizards produce chemical secretions for scent marking that may have a role in sexual selection. In the laboratory, female rock lizards (Iberolacerta cyreni) prefer the scent of males with more ergosterol in their femoral secretions. However, it is not known whether the scent-marks of male rock lizards may actually attract females to male territories in the field. Methodology/Principal Findings: In the field, we added ergosterol to rocks inside the territories of male lizards, and found that this manipulation resulted in increased relative densities of females in these territories. Furthermore, a higher number of females were observed associated to males in manipulated plots, which probably increased mating opportunities for males in these areas. Conclusions/Significance: These and previous laboratory results suggest that female rock lizards may select to settle in home ranges based on the characteristics of scent-marks from conspecific males. Therefore, male rock lizards might attract more females and obtain more matings by increasing the proportion of ergosterol when scent-marking their territories. However, previous studies suggest that the allocation of ergosterol to secretions may be costly and only high quality male
Extensive population genetic structure in the giraffe
<p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p
Differential Effects of Early- and Late-Life Access to Carotenoids on Adult Immune Function and Ornamentation in Mallard Ducks (Anas platyrhynchos)
Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges. We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity
- …