366 research outputs found

    The Onsager Algebra Symmetry of τ(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the τ(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Multi-particle structure in the Z_n-chiral Potts models

    Full text link
    We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi, where \phi is the chiral angle and Q is the Z_n-charge of the respective particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript), BONN-HE-92-3

    Eigenvectors in the Superintegrable Model I: sl_2 Generators

    Full text link
    In order to calculate correlation functions of the chiral Potts model, one only needs to study the eigenvectors of the superintegrable model. Here we start this study by looking for eigenvectors of the transfer matrix of the periodic tau_2(t)model which commutes with the chiral Potts transfer matrix. We show that the degeneracy of the eigenspace of tau_2(t) in the Q=0 sector is 2^r, with r=(N-1)L/N when the size of the transfer matrix L is a multiple of N. We introduce chiral Potts model operators, different from the more commonly used generators of quantum group U-tilde_q(sl-hat(2)). From these we can form the generators of a loop algebra L(sl(2)). For this algebra, we then use the roots of the Drinfeld polynomial to give new explicit expressions for the generators representing the loop algebra as the direct sum of r copies of the simple algebra sl(2).Comment: LaTeX 2E document, 11 pages, 1 eps figure, using iopart.cls with graphicx and iopams packages. v2: Appended text to title, added acknowledgments and made several minor corrections v3: Added reference, eliminated ambiguity, corrected a few misprint

    On τ(2)\tau^{(2)}-model in Chiral Potts Model and Cyclic Representation of Quantum Group Uq(sl2)U_q(sl_2)

    Full text link
    We identify the precise relationship between the five-parameter τ(2)\tau^{(2)}-family in the NN-state chiral Potts model and XXZ chains with Uq(sl2)U_q (sl_2)-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover an one-parameter family of LL-operators in terms of the quantum group Uq(sl2)U_q (sl_2). When NN is odd, the NN-state τ(2)\tau^{(2)}-model can be regarded as the XXZ chain of Uq(sl2)U_{\sf q} (sl_2) cyclic representations with qN=1{\sf q}^N=1. The symmetry algebra of the τ(2)\tau^{(2)}-model is described by the quantum affine algebra Uq(sl^2)U_{\sf q} (\hat{sl}_2) via the canonical representation. In general for an arbitrary NN, we show that the XXZ chain with a Uq(sl2)U_q (sl_2)-cyclic representation for q2N=1q^{2N}=1 is equivalent to two copies of the same NN-state τ(2)\tau^{(2)}-model.Comment: Latex 11 pages; Typos corrected, Minor changes for clearer presentation, References added and updated-Journal versio

    Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure

    Get PDF
    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking

    Fusion Operators in the Generalized τ(2)\tau^{(2)}-model and Root-of-unity Symmetry of the XXZ Spin Chain of Higher Spin

    Full text link
    We construct the fusion operators in the generalized τ(2)\tau^{(2)}-model using the fused LL-operators, and verify the fusion relations with the truncation identity. The algebraic Bethe ansatz discussion is conducted on two special classes of τ(2)\tau^{(2)} which include the superintegrable chiral Potts model. We then perform the parallel discussion on the XXZ spin chain at roots of unity, and demonstrate that the sl2sl_2-loop-algebra symmetry exists for the root-of-unity XXZ spin chain with a higher spin, where the evaluation parameters for the symmetry algebra are identified by the explicit Fabricius-McCoy current for the Bethe states. Parallels are also drawn to the comparison with the superintegrable chiral Potts model.Comment: Latex 33 Pages; Typos and errors corrected, New improved version by adding explanations for better presentation. Terminology in the content and the title refined. References added and updated-Journal versio

    On the construction of pseudo-hermitian quantum system with a pre-determined metric in the Hilbert space

    Full text link
    A class of pseudo-hermitian quantum system with an explicit form of the positive-definite metric in the Hilbert space is presented. The general method involves a realization of the basic canonical commutation relations defining the quantum system in terms of operators those are hermitian with respect to a pre-determined positive definite metric in the Hilbert space. Appropriate combinations of these operators result in a large number of pseudo-hermitian quantum systems admitting entirely real spectra and unitary time evolution. The examples considered include simple harmonic oscillators with complex angular frequencies, Stark(Zeeman) effect with complex electric(magnetic) field, non-hermitian general quadratic form of N boson(fermion) operators, symmetric and asymmetric XXZ spin-chain in complex magnetic field, non-hermitian Haldane-Shastry spin-chain and Lipkin-Meshkov-Glick model.Comment: 29 pages, revtex, minor changes, version to appear in Journal of Physics A(v3

    The quiet crossing of ocean tipping points

    Get PDF
    Anthropogenic climate change profoundly alters the ocean’s environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts

    sl(N) Onsager's Algebra and Integrability

    Get PDF
    We define an sl(N) sl(N) analog of Onsager's Algebra through a finite set of relations that generalize the Dolan Grady defining relations for the original Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be isomorphic to a fixed point subalgebra of sl(N) sl(N) Loop Algebra with respect to a certain involution. As the consequence of the generalized Dolan Grady relations a Hamiltonian linear in the generators of sl(N) sl(N) Onsager's Algebra is shown to posses an infinite number of mutually commuting integrals of motion

    Antiperiodic dynamical 6-vertex model I: Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic 8-vertex model

    Full text link
    The spin-1/2 highest weight representations of the dynamical 6-vertex and the standard 8-vertex Yang-Baxter algebra on a finite chain are considered in this paper. For the antiperiodic dynamical 6-vertex transfer matrix defined on chains with an odd number of sites, we adapt the Sklyanin's quantum separation of variable (SOV) method and explicitly construct SOV representations from the original space of representations. We provide the complete characterization of eigenvalues and eigenstates proving also the simplicity of its spectrum. Moreover, we characterize the matrix elements of the identity on separated states by determinant formulae. The matrices entering in these determinants have elements given by sums over the SOV spectrum of the product of the coefficients of separate states. This SOV analysis is not reduced to the case of the elliptic roots of unit and the results here derived define the required setup to extend to the dynamical 6-vertex model the approach recently developed in [1]-[5] to compute the form factors of the local operators in the SOV framework, these results will be presented in a future publication. For the periodic 8-vertex transfer matrix, we prove that its eigenvalues have to satisfy a fixed system of equations. In the case of a chain with an odd number of sites, this system of equations is the same entering in the SOV characterization of the antiperiodic dynamical 6-vertex transfer matrix spectrum. This implies that the set of the periodic 8-vertex eigenvalues is contained in the set of the antiperiodic dynamical 6-vertex eigenvalues. A criterion is introduced to find simultaneous eigenvalues of these two transfer matrices and associate to any of such eigenvalues one nonzero eigenstate of the periodic 8-vertex transfer matrix by using the SOV results. Moreover, a preliminary discussion on the degeneracy of the periodic 8-vertex spectrum is also presented.Comment: 36 pages, main modifications in section 3 and one appendix added, no result modified for the dynamical 6-vertex transfer matrix spectrum and the matrix elements of identity on separate states for chains with an odd number of site
    corecore