A class of pseudo-hermitian quantum system with an explicit form of the
positive-definite metric in the Hilbert space is presented. The general method
involves a realization of the basic canonical commutation relations defining
the quantum system in terms of operators those are hermitian with respect to a
pre-determined positive definite metric in the Hilbert space. Appropriate
combinations of these operators result in a large number of pseudo-hermitian
quantum systems admitting entirely real spectra and unitary time evolution. The
examples considered include simple harmonic oscillators with complex angular
frequencies, Stark(Zeeman) effect with complex electric(magnetic) field,
non-hermitian general quadratic form of N boson(fermion) operators, symmetric
and asymmetric XXZ spin-chain in complex magnetic field, non-hermitian
Haldane-Shastry spin-chain and Lipkin-Meshkov-Glick model.Comment: 29 pages, revtex, minor changes, version to appear in Journal of
Physics A(v3