795 research outputs found

    Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal

    Get PDF
    © 2015 Van den Broeck et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics

    Work and heat probability distributions in out-of-equilibrium systems

    Get PDF
    We review and discuss the equations governing the distribution of work done on a system which is driven out of equilibrium by external manipulation, as well as those governing the entropy flow to a reservoir in a nonequilibrium system. We take advantage of these equations to investigate the path phase transition in a manipulated mean-field Ising model and the large-deviation function for the heat flow in the asymmetric exclusion process with periodically varying transition probabilities.Comment: Contribution to Proceedings of "Work, Dissipation, and Fluctuations in Nonequilibrium Physics", Brussels, 200

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section

    Evaluations of Tactics for Automated Negotiations

    Get PDF
    [[abstract]]Automated negotiation under the infrastructure of e-commerce is becoming an important issue. However, although the communication protocols and frameworks of automated negotiation have been extensively investigated, the corresponding tactics and strategies are still underdeveloped and need to be evaluated further. Based on the negotiation model proposed by Faratin et al., this paper examines the performance of automated negotiation tactics and intends to provide concise suggestions for the users of automated negotiation. First, theoretical analysis is used to evaluate the behavior-dependent tactics. Constructive conclusions are obtained when single-issue negotiations are considered. Next, a new framework for applying single-issue tactics to multi-issue negotiation is proposed. Based on this framework, theoretical analysis is then extended to multi-issue cases. Finally, different from the previous work, exhaustive simulations based on two-issue negotiations are performed to evaluate the effectiveness of behavior-dependent and time-dependent tactics. The experimental results provide several important insights into negotiation tactics.[[booktype]]紙本[[booktype]]電子

    A Strategy To Estimate Unknown Viral Diversity in Mammals

    Get PDF
    The majority of emerging zoonoses originate in wildlife, and many are caused by viruses. However, there are no rigorous estimates of total viral diversity (here termed “virodiversity”) for any wildlife species, despite the utility of this to future surveillance and control of emerging zoonoses. In this case study, we repeatedly sampled a mammalian wildlife host known to harbor emerging zoonotic pathogens (the Indian Flying Fox, Pteropus giganteus) and used PCR with degenerate viral family-level primers to discover and analyze the occurrence patterns of 55 viruses from nine viral families. We then adapted statistical techniques used to estimate biodiversity in vertebrates and plants and estimated the total viral richness of these nine families in P. giganteus to be 58 viruses. Our analyses demonstrate proof-of-concept of a strategy for estimating viral richness and provide the first statistically supported estimate of the number of undiscovered viruses in a mammalian host. We used a simple extrapolation to estimate that there are a minimum of 320,000 mammalian viruses awaiting discovery within these nine families, assuming all species harbor a similar number of viruses, with minimal turnover between host species. We estimate the cost of discovering these viruses to be ~6.3billion(or 6.3 billion (or ~1.4 billion for 85% of the total diversity), which if annualized over a 10-year study time frame would represent a small fraction of the cost of many pandemic zoonoses. IMPORTANCE Recent years have seen a dramatic increase in viral discovery efforts. However, most lack rigorous systematic design, which limits our ability to understand viral diversity and its ecological drivers and reduces their value to public health intervention. Here, we present a new framework for the discovery of novel viruses in wildlife and use it to make the first-ever estimate of the number of viruses that exist in a mammalian host. As pathogens continue to emerge from wildlife, this estimate allows us to put preliminary bounds around the potential size of the total zoonotic pool and facilitates a better understanding of where best to allocate resources for the subsequent discovery of global viral diversity
    corecore