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Abstract

We review and discuss the equations governing the distribution of work done on a system which is driven out of equilibrium by
external manipulation, as well as those governing the entropy flow to a reservoir in a nonequilibrium system. We take advantage
of these equations to investigate the path phase transition in a manipulated mean-field Ising model and the large-deviation func-
tion for the heat flow in the asymmetric exclusion process with periodically varying transition probabilities. To cite this article:
A. Imparato, L. Peliti, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Distributions du travail et de la chaleur dans des systèmes hors équilibre. Nous passons en revue et discutons les équations
régissant la distribution du travail effectué sur un système manipulé hors d’équilibre, ainsi que celles qui régissent le flux d’entropie
vers un réservoir dans un système hors d’équilibre. Nous exploitons ces équations dans l’étude de la transition de phase dans les
chemins d’un modèle d’Ising champ moyen manipulé et de la fonction des grandes déviations pour le flux d’entropie dans le modèle
d’exclusion asymétrique à probabilités de transition périodiques dans le temps. Pour citer cet article : A. Imparato, L. Peliti, C. R.
Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the recent years we have seen an important outburst of activity in the field of nonequilibrium thermodynamics
and statistical mechanics, sparked by the discovery of a number of results of remarkable generality and impact [1–18].
Some of these results yield predictions on the properties of the distribution of the work performed on a system as
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it is manipulated, while others describe properties of the distribution of the entropy generated in the nonequilibrium
process. It is clear that in order to make good use of this information, it is advisable to investigate in detail the
properties of the distribution of both work and heat in a manipulated system.

In the present Contribution we discuss the work and the heat distribution in some systems, pointing out some
aspects that we have found interesting enough to be brought to the attention of our colleagues. We first consider the
expression of the generating function for the work distribution in a ‘large’ system. Although our results formally hold
in the limit of infinite size, they are of interest also for systems small enough that the relevant energy barriers are
of the order of a few kBT , well within the range in which work fluctuations can be observed. In a large system, as
already pointed out by Ritort [19] and discussed in [20], the generating function of the work distribution is dominated
by the contribution of phase space paths which satisfy an ordinary differential equation akin to a classical equation of
motion. We have found that in some situations these paths can exhibit a singularity, for some protocols, as a function
of the variable conjugate to the accumulated work. This singularity is similar to a phase transition taking place in
the space of paths. We shall exhibit a simple model in which this phenomenon takes place and attempt to define the
corresponding phase diagram.

We also consider the heat flow distribution in a general Markov process, whose differential equations were derived
by Lebowitz and Spohn [8]. We were able to evaluate the solution of this equation for the asymmetric exclusion model
with periodically varying transition probabilities, and to exhibit that the Gallavotti–Cohen [5] symmetry also holds in
this case.

2. The generating function for the work distribution

We first briefly review the derivation of the generating function for the work distribution of manipulated systems,
which may be found in [20]. Let us consider a system with discrete states i of energy Hi(μ), where μ is a parameter
which is manipulated according to some protocol μ(t), starting at t = 0. The evolution of the system is described by
a Markovian stochastic process: given, for any two states i, j , the transition rate kij (t) from state j to state i at time
t , the system satisfies the set of differential equations

∂pi

∂t
=

∑
j ( �=i)

[
kij (t)pj (t) − kji(t)pi(t)

]
(1)

where pi(t) is the probability that the system is found at state i at time t . Let p
eq
i (μ) represent the canonical equilib-

rium distribution corresponding to a given value of μ. We have

p
eq
i (μ) = e−βHi(μ)

Zμ

(2)

where Zμ = ∑
i e−βHi(μ) = e−βFμ is the partition function corresponding to the value μ of the parameter, and Fμ the

relative free energy. The transition rates kij (t) are compatible with the equilibrium distribution p
eq
i (μ), i.e., one has,

for all i,∑
j ( �=i)

[
kij (t)p

eq
j

(
μ(t)

) − kji(t)p
eq
i

(
μ(t)

)] = 0 (3)

We assume that the system is at equilibrium at t = 0, and therefore, that pi(t) satisfies the initial condition

pi(t = 0) = p
eq
i

(
μ(0)

)
(4)

We now consider the joint probability distribution Φi(W, t) that the system is found in state i, having received a work
W , at time t . The set of differential equations satisfied by the distribution functions Φi(W, t) reads

∂Φi

∂t
=

∑
j ( �=i)

[
kij (t)Φj (W, t) − kji(t)Φi(W, t)

] − μ̇H ′
i

(
μ(t)

)∂Φi

∂W
(5)

The joint probability distribution Φi(W, t) satisfies the initial condition Φi(W,0) = δ(W)p
eq
i (μ(0)). Then the state-

independent work probability distribution P(W, t) is defined by P(W, t) = ∑
i Φi(W, t). It is convenient to introduce

the generating function of Φi with respect to the work distribution, defined by

Ψi(λ, t) =
∫

dW eλWΦi(W, t) (6)
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We assume that Φi(W, t) vanishes fast enough, as |W | → ∞, for Ψi(λ, t) to exist for any λ. The function Ψi satisfies,
for all λ, the initial condition Ψi(λ, t0) = p

eq
i (μ(0)), and evolves according to the differential equation

∂tΨi(λ, t) =
∑
j ( �=i)

[kijΨj − kjiΨi] + λμ̇
∂Hi(μ(t))

∂μ
Ψi(λ, t) (7)

Exploiting (3), it is easy to verify that, if λ = −β , the solution of (7) with its initial condition reads

Ψi(−β, t) = e−βHi(μ(t))

Zμ(0)

= Zμ(t)

Zμ(0)

p
eq
i

(
μ(t)

)
(8)

We can thus straightforwardly check that the solution of (7) verifies the Jarzynski equality [6]:〈
e−βW

〉 = Zμ(t)

Zμ(0)

= e−β(F (μ(t))−F(μ(0))) (9)

It is thus possible, in principle, to evaluate the probability distribution function of the work W by solving Eqs. (5) or (7)
for all the microscopic states i. This approach has been implemented in [21] for a simple model of a biopolymer.

The approach discussed in the previous section becomes quickly unwieldy as the complexity of the system in-
creases: the dimension of the system (5) is equal to the number of microscopic states of the system. When the system
considered is characterized by a large number of degrees of freedom, it is convenient to introduce some collective
variables, and an effective free energy, in order to reduce the complexity of the problem. The assumption underlying
this approach is that the system reaches on a comparatively short time scale a quasiequilibrium state constrained by
the instantaneous value of the collective coordinate. Thus, on the time scale of the experiment, the state of the sys-
tem can be well summarized by the collective coordinate, with the corresponding free energy playing the role of the
Hamiltonian.

Let us now consider a system characterized by a generic equilibrium free energy function Fμ(M), where μ is
again the parameter which is manipulated, and M is some collective (mean-field) variable. We assume that the system
dynamics is stochastic and Markovian: let P(M, t) denote the probability distribution function of the variable M at
time t , then its time evolution is described by the differential equation

∂P

∂t
= ĤP (10)

where Ĥ is a differential operator which depends on the parameter μ. We require that the operator Ĥ is compatible
with the equilibrium distribution function of the system, i.e., that the relation

Ĥe−βFμ(M) = 0 (11)

holds for any value of μ.
The work done on a system during the manipulation, along a given stochastic trajectory M(t), is given by

W =
t∫

0

dt ′ μ̇(t ′)
∂Fμ(M(t ′))

∂μ
(12)

Using the same arguments as for the discrete case, one finds that the time evolution of the joint probability distribution
Φ(M,W, t) of M and W is described by the differential equation

∂Φ

∂t
= ĤΦ − μ̇

∂Fμ

∂μ

∂Φ

∂W
(13)

It can be easily shown that the solution of (13) identically satisfies the Jarzynski equality [22].
Eq. (13) becomes much easier to treat if one introduces the generating function Ψ (M,λ, t) for the work distribu-

tion:

Ψ (M,λ, t) =
∫

dW eλWΦ(M,W, t) (14)

Eq. (13) thus becomes

∂Ψ = ĤΨ + λμ̇
∂Fμ

Ψ (15)

∂t ∂μ
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with the initial condition Ψ (M,λ,0) = p
eq
μ(0)(M) = e−βFμ(0)(M)/Zμ(0).

As shown in [22], one can derive a path integral representation of the solution of (15), taking for the differential
operator Ĥ the expression

Ĥ · =
∞∑

k=0

∂k

∂Mk

{
gk(M) · } (16)

(The coefficients gk(M) also depend on μ, but this dependence is understood to lighten the notation.) One obtains the
formal solution

Ψ (M,λ, tf) =
∫

dM0

M(tf)=M∫
M(0)=M0

DγDM exp
{
S[γ,M]}Ψ (M0, λ,0) (17)

where S[γ,M] = ∫ tf
0 dt L(t). The ‘Lagrangian’ L is given by

L(t) =
(

γ Ṁ +H(γ,M) + λμ̇
∂Fμ

∂μ

)∣∣∣∣
γ (t),M(t),μ(t)

(18)

where the ‘Hamiltonian’ H(γ,M) is defined by

H(γ,M) =
∞∑

k=0

γ kgk(M) (19)

Let N indicate the size of the system, and let us define the ‘intensive quantity’ m = M/N . We can thus define, in the
thermodynamic limit N → ∞, m = const., the densities

fμ(m) = lim
N→∞

Fμ(Nm)

N
, H(γ,m) = lim

N→∞
H(γ,Nm)

N
, 	(t) = lim

N→∞
L(t)

N
(20)

with 	(t) = γ ṁ + H(γ,m) + λμ̇∂fμ/∂μ. As discussed in [19,22], when the system size N is large enough, the path
integral in (17) is dominated by the classical path (γc(t),mc(t)), solution of the equations

δS
δγ (t)

= 0 �⇒ ṁ = −∂H

∂γ
; δS

δm(t)
= 0 �⇒ γ̇ = ∂H

∂m
+ λμ̇

∂2fμ

∂m∂μ
(21)

We shall now see that by requiring the system is in equilibrium before the manipulation starts, we impose an initial
condition on these equations. In order to evaluate the integral over M0 in (17) with the saddle-point method, we note
that Ψ (M,λ,0) appearing on its rhs, is given by p

eq
μ(0)(M). Furthermore, from the definition of 	(t), (20), it follows

that
tf∫

0

dt 	(t) = mtfγtf − m0γ0 +
tf∫

0

dt [−γ̇ m + H + λμ̇∂μfμ] (22)

Thus, substituting (22) into (17), and taking the derivative with respect to m0 = M0/N , we obtain the saddle-point
condition

γ (t=0) = −β
∂fμ

∂m

∣∣∣∣
t=0

(23)

In this way one can devise a strategy to evaluate Ψ (M,λ, tf) for a given manipulation protocol μ(t), when the
system size N is large enough. One has to solve the classical evolution equations (21) with a two-point boundary
condition: namely, (23) should be imposed at t = 0, and the condition Nm(tf) = M should be imposed at the final
time tf. Once the relevant classical path (γc(t),mc(t)) has been evaluated, one can obtain the action density s[γc,mc] =
limN→∞ S[γc,Nmc]/N from the expression s[γc,mc] = ∫ tf

0 dt 	(t). We are interested in the state-independent work
probability distribution

P(W, tf) =
∫

dλ e−λWΓ (λ, tf) (24)
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where we have defined Γ (λ, tf) = ∫
dMΨ (M,λ, tf). We shall now see that evaluating Γ (λ, tf) identifies a well-

defined boundary condition on γc(tf). We have indeed

Γ (λ, tf) =
∫

dM dM0

M(tf)=M∫
M(0)=M0

DγDM exp

[
N

∫
dt 	(t)

]
Ψ (M0, λ,0) (25)

In order to evaluate the integral over M with the saddle point method, we notice that, upon derivation of the rhs of (22)
with respect to mtf , we obtain the condition γf ≡ γ (tf) = 0. Thus, the equation of motions (21) have to be solved with
the initial and the final conditions that we have derived: let (γ ∗

c (t),m∗
c(t)) denote the solution of equations (21)

satisfying these conditions. For each value of λ, taking into account its initial condition, we obtain the following
saddle point estimation for Γ (λ, tf):

Γ (λ, tf) ∝ exp[Ng(λ)]
Z0

(26)

where g(λ) = ∫ tf
0 dt	∗

c(t) − βfμ0(m
∗
0). In this equation, 	∗

c(t) is 	(t) evaluated along the classical path (γ ∗
c (t),m∗

c(t)).
In order to evaluate the integral on the rhs of (24), we use the saddle point method again, and obtain

P(Nw, tf) = N exp
{
N

[−λ∗(w)w + g
(
λ∗(w)

)]}
, with g′(λ∗) = w (27)

where N is a normalization constant. Notice that the saddle point estimate for P(W, tf) obtained in this way, implies
that the distribution becomes more and more sharply peaked around its maximum value as N → ∞. This is compatible
with the expectation that the work fluctuations becomes relatively smaller as the size of the system increases, and in
the limit N → ∞, which can be thought as the limit of a macroscopic system, no work fluctuations are observed, and
the work done on the system during the manipulation takes one single value, corresponding to the most probable value
of P(W, tf).

3. A path phase transition

In this section we consider an Ising model in mean-field approximation, which evolves according to a Fokker–
Planck equation, whose differential operator reads

Ĥ · = ω0N
∂

∂M

[(
∂F
∂M

)
· + β−1 ∂

∂M
·
]

(28)

leading to the Hamiltonian

H(γ,m) = ω0

[
γ

(
∂f

∂m

)
+ β−1γ 2

]
(29)

where the free energy density f (m) = F(Nm)/N is given by

f (m) = −J

2
m2 − hm + β−1

[(
1 + m

2

)
log

(
1 + m

2

)
+

(
1 − m

2

)
log

(
1 − m

2

)]
(30)

We take the magnetic field h(t) as the external parameter that varies with the time and drives the system out of
equilibrium. The equations of motion (21) thus become

ṁ = −∂H

∂γ
= −ω0

∂f

∂m
− 2kBT ω0γ ; γ̇ = ∂H

∂m
+ λμ̇

∂2f

∂m∂μ
= ω0

∂2f

∂m2
γ − λḣ (31)

The magnetic field h(t) is taken to vary according to the linear protocol

h(t) = h0 + (h1 − h0)
t

tf
; 0 � t � tf (32)

Here we consider the case of Ising model below the transition temperature, i.e., J = 1.1, and the initial and final
value of the magnetic field h(t) are taken to be h0 = −h1 = −1. In the present section we set β = 1/kBT = 1. We
plot in Fig. 1 the probability distribution of the work done on the model, as obtained from (27), for two values of
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Fig. 1. Probability distribution function P(w) for the system described by the differential operator (28) with equilibrium free energy (30), manip-
ulated according to the protocol (32), with J1 = 1.1, h0 = −h1 = −1, and tf = 2 (left panel), tf = 4 (right panel). Continuous line: probability
density P(w) of the work ‘per spin’ w = W/N , with N = 100. The histogram of the work is obtained by 10 000 simulations of the process, see
text. Insets: P̂ (w) as given by (33), whose integral verifies the Jarzynski equality.

Fig. 2. Left: plot of m∗
c as a function of t for different values of λ, with J = 1.1, h0 = −h1 = −1, and tf = 2. The values of λ vary between λ = −5

(bottom curve) and λ = 5 (top curve), with a step �λ = 0.2. Right: plot of w as a function of λ∗ , as defined by (27). Inset: plot of g as a function
of λ as implicitly defined by (26).

the manipulation rate. In the same figure the histograms of the work obtained by simulating the process are plotted.
The process is simulated by integrating the corresponding Langevin equation, using the Heun algorithm [23,24]. The
agreement with the curves as obtained from (27) is satisfactory. In the insets of the same figure, we plot the quantity
P̂ (w) defined by

P̂ (w) = exp[−βNw]P(w) (33)

On the one hand we find
∫

dw P̂ (w) = exp[−β�F ] = 1 as predicted by the JE (9), while on the other hand the
histogram obtained by the simulations exhibits no point (no realization of the process) with w < 0 = �F . Thus
the work distribution obtained by the simulation of the process cannot reliably be used for estimating �F . This is a
typical example of how the lack of knowledge of the tails of the work distributions in micro-manipulations experiments
hinders the possibility of using (9) to evaluate free energy differences.

We now consider the classical paths m∗
c(t, λ), solutions of Eqs. (31), and thus contributing to the probability

distribution P(w) via (27). In the left panel of Fig. 2, we plot m∗
c as a function of t for different values of λ, obtained

by numerical solution of Eqs. (31), for tf = 2: we observe that the trajectory m∗
c(t, λ) varies continuously as λ is varied.

As a consequence, since the work done on the system along each trajectory m∗
c(t, λ) reads w = − ∫ tf

0 dt ′ ḣ(t ′)m∗
c(t

′, λ),
w turns out to be a continuous function of λ (Fig. 2, right panel). Furthermore, since w and the saddle point value λ∗
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Fig. 3. Left: Plot of m∗
c as a function of t for different values of λ, with J = 1.1, h0 = −h1 = −1, and tf = 0.2. The values of λ vary between

λ = −5 (bottom curve) and λ = 5 (top curve), with a step �λ = 0.2. Thick line: λ = 0.5. Right: plot of w as a function of λ∗, as defined by (27).
Inset: plot of g as a function of λ as implicitly defined by (26).

Fig. 4. Left: Ising model phase diagram, in the r = (h1 − h0)/tf, J plane. In the upper right part of the diagram the system exhibits path phase
separation, while in the lower left part no phase separation is found. The points correspond to the value J ∗(r) such that for J > J ∗(r) the function
w(λ∗) exhibits a discontinuity at λ = 1/2. Right: Path Helmholtz free energy for the system described by the differential operator (28), manipulated
according to the protocol (32). Full line: J = 1.1, h0 = −h1 = −1, and tf = 0.2. Dotted line: J = 1.1, h0 = −h1 = −1, and tf = 2. The curves are
arbitrarily shifted for clarity.

are related by (27), the function g(λ) as implicitly defined by (26) is a differentiable function with respect to λ, as
shown in the inset of Fig. 2, right panel. We now consider a faster protocol, tf = 0.2: the results are plotted in Fig. 3.
One can clearly see that the classical paths m∗

c(t, λ) exhibit a discontinuity for λ = 0.5, jumping from negative to
positive values. Accordingly, w(λ∗) exhibits a discontinuity at λ∗ = 0.5, as shown in the right panel of Fig. 3. This
is reflected in the appearance of a cusp in the function g(λ), at λ = 1/2, see the inset of Fig. 3. We find that for any
value of r = (h1 − h0)/tf it is always possible to find a value of J = J ∗(r) such that for J > J ∗(r) the function
w(λ∗) exhibits a discontinuity at λ = 1/2, and thus the trajectories m∗

c(t, λ) exhibit a path phase separation. In Fig. 4,
left panel, we show the system phase diagram: in the upper right part of the diagram the system exhibits path phase
separation, while in the lower left part the trajectories m∗

c(t, λ) vary continuously as λ is varied.
Let us now define the function

φ(w) = − lim
N→∞

1

N
logP(Nw, tf) (34)

The functions g(λ) and φ(w) are related by a Legendre transformation:

φ(w) = inf
(−g(λ) + λw

) = −g
(
λ∗(w)

) + λ∗(w)w (35)

λ
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where λ∗(w) is the solution of (27). Thus λ and w act like thermodynamically conjugate variables. These functions
can be thus interpreted in terms of path thermodynamics: g(λ) can be viewed as a path Gibbs free energy, while φ(w)

is the corresponding Helmholtz free energy. This analogy was first pointed out in [19,20].
How do we interpret the singularity in g(λ)? In strict analogy with thermodynamics, the discontinuity of g′(λ)

with respect to its independent variable λ corresponds to the linear behavior of its Legendre transform φ(w) between
(w+, φ(w+)) and (w−, φ(w−)), where w± are the values of w either side of the discontinuity. Thus the ‘path phase
coexistence’ appears as an exponential dependence of P(Nw, tf) = exp(−Nφ(w)) on W in a certain interval. The
presence of such exponential tails was conjectured in [19] for a system of independent spins, but we were only able
to exhibit them in an interacting system like the present one.

4. The distribution of heat flow in a Markov process

In this section we discuss the equation governing the time evolution of the probability distribution function of the
entropy which flows into the environment surrounding a stochastic system which evolves across its phase space. We
assume that the system at issue has a discrete phase space and its time evolution is a stochastic Markovian process
described by (1). For simplicity, we consider a stochastic dynamics with a discrete small time scale τ , such that
the jumps between states take place at discrete times tk = kτ . We consider a generic path ω defined by ω(t) = ik iff
tk � t < tk+1, with k = 0,1, . . . ,M , with tM+1 = tf, and define the time-reversed path ω̃ by ω̃(t) = ik for t̃k+1 � t < t̃k ,
where t̃ = t0 + tf − t . Let us define the quantity Q(ω) by

Q(ω) = − ln

[P(ω)

P̃(ω̃)

]
= −

M∑
k=1

ln

[
Kikik−1(tk)

Kik−1ik (tk)

]
(36)

where P(ω) is the probability of the forward path ω (conditioned by its initial state i0) and P̃(ω̃) is the probability
of the time-reversed path ω̃, conditioned by its initial state iM ≡ if and subject to the time-reversed protocol K̃ij (t) =
Kij (t̃) [8–10,16]. We have assumed that, if Kij (t) > 0 at any time t , one also has Kji(t) > 0.

It is worth noting that, if the detailed balance conditions holds for the transition rates Kij (t), and the energy Hi(t) is
associated to the state i of the system, we have Kji(t)/Kij (t) = exp{[Hi(t)−Hj(t)]/T }, and thus T ln[Kji(t)/Kij (t)]
represents the heat exchanged with the reservoir in the jump from state j to state i. (In this section we set kB = 1.)
Thus the quantity Q(ω), defined by (36), is the entropy which flows into the reservoir as the system evolves along
the path ω [8,14,15,25]. Let us define �sij as the entropy which flows into the reservoir as a result of the jump of the
system from state j to state i: �sij = log[Kji(t)/Kij (t)]. The differential equation governing the time evolution of
the joint probability distribution function Φi(Q, t) reads [25]

∂Φi(Q, t)

∂t
=

∑
j ( �=i)

{
Kij

[ ∞∑
n=0

(−�sij )
n

n!
∂nΦj (Q, t)

∂Qn

]
− KjiΦi(Q, t)

}
(37)

By introducing, for each i, the generating function Ψi(λ, t) = ∫
dQ exp(λQ)Φi(Q, t), and taking into account the

expression of �sij , we obtain the master equation

∂Ψi(λ, t)

∂t
=

∑
j ( �=i)

[
Kij

(
Kji

Kij

)λ

Ψj (λ, t) − KjiΨi(λ, t)

]
=

∑
j

Hij (λ)Ψj (λ, t) (38)

which was first derived by Lebowitz and Spohn in [8]. In the case of time-independent transition rates Kij , or of
transition rates which depend periodically on the time, it can be useful, in order to evaluate the distribution func-
tion Φ(Q, t) = ∑

i Φ(Q, t), to introduce the large-deviation function. In the long-time limit, the generating function
Ψ (λ, t) = ∑

i Ψi(λ, t) is dominated by the maximum eigenvalue g(λ) of the matrix H(λ) = (Hij (λ)), which appears
in the master equation (38). Therefore, we have, for long times t ,

Ψ (λ, t) ∝ exp
[
tg(λ)

]
(39)

By using the last equation and using the definition of the generating function, one obtains the probability distribution
of the entropy flow in the long time limit:

Φ(Q, t) =
∫

dλ
e−λQΨ (λ, t) ∝ etg(λ∗)−λ∗Q (40)
2π i
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where λ∗ is the saddle point value implicitly defined by ∂g/∂λ|λ∗ = Q/t . If we introduce the entropy flow per unit
time q = Q/t , we obtain the large-deviation function

f (q) ≡ g(λ∗) − λ∗q = lim
t→∞

1

t
logΦ(tq, t) (41)

Note that the functions g(λ) and f (q) are Legendre transform of each other, and can be then interpreted in terms of
path thermodynamics: g(λ) can be viewed as a path Gibbs free energy, while f (q) is the corresponding Helmholtz
free energy. The connection between the generating function Ψ (λ) and the thermodynamic formalism for dynamical
systems [26] has been investigated in Ref. [27].

If the system is characterized by a small number of states, one can explicitly solve Eqs. (38), and thus obtain the
total generating function Ψ (λ, t) ≡ ∑

i Ψi(λ, t) = 〈eλQ〉. While on the one hand this direct approach becomes rapidly
impracticable, as the system phase space size increases, on the other hand (38) suggests a practical computational
scheme to evaluate the generating function Ψ (λ, t). Since Ψ (λ, t) = ∫

DωtP(ωt )eλQ(ωt ), we have

∂Ψ (λ, t)

∂λ
= 〈Q〉λΨ (λ, t) (42)

where 〈. . .〉λ is the average in the weighted ensemble P(ωt ) exp[λQ(ωt )]/Ψ (λ, t), where Ψ (λ, t) = Zλ is the ‘par-
tition function’ of this ensemble, which will be called the ‘λ-ensemble’ in the following. The solution of (42) thus
reads

Ψ (λ, t) = exp

[ λ∫
0

dλ′〈Q〉λ′

]
(43)

Following [25], in the present article we consider a procedure to evaluate Ψ (λ, t) which generates trajectories in
a suitable entropy-flow weighted ensemble. The direct simulation of trajectories in the λ-ensemble is hindered by the
fact that one should already know the exact expression of the ensemble partition function, i.e., the function Ψ (λ, t),
which is the unknown quantity at issue.

To avoid the problem of the direct evaluation of Ψ (λ, t), following [28], we introduce a generic functional of the
paths Π(ω), and write

〈Q〉λ =
∫
Dωt(Q(ωt )/Π(ωt ))Π(ωt )P(ωt )eλQ(ωt )∫

Dωt(1/Π(ωt ))Π(ωt )P(ωt )eλQ(ωt )
= 〈Q/Π〉λ,Π

〈1/Π〉λ,Π

(44)

where 〈. . .〉λ,Π indicates the average in the new P(ωt )Π(ωt ) exp[λQ(ωt )] ensemble, which will be indicated as the
(λ,Π)-ensemble in the following.

We choose the functional of the path Π(ω) as discussed in [25]. The probability of a given path ω reads

P(ω) = ΩiN,iN−1(tN−1)ΩiN−1,iN−2(tN−2) · · ·Ωi1,i0(t0)p
0
i0

(45)

where the transition probabilities Ωi,j (t) are defined as Ωi,j = τKij (t), and Ωi,i = 1−∑
j ( �=i) Ωji(t). We now define

the new transition probabilities Ω̃i,j = τKij (Kji/Kij )
λ, and Ω̃i,i = 1−∑

j ( �=i) Ω̃ji , and choose the functional Π(ω),
such that [25]

Π(ω) =
M∏

k=1

Πik,ik−1(tk), with Πij (t) =
{

1, if i �= j

Ω̃jj (t)/Ωjj (t), if i = j
(46)

Recalling the definition of Q(ω), (36), we obtain that the probability in the (λ,Π)-ensemble is given by

P(ω)Π(ω) exp
[
λQ(ω)

] = Ω̃iN ,iN−1Ω̃iN ,iN−1 · · · Ω̃i1,i0p
0
i0

(47)

and thus 〈Q〉λ can be evaluated by using (44), for the particular choice of Π , as given by (46). Note that (47) implies
that the one can generate a trajectory in the (λ,Π)-ensemble by simply simulating the process with the Ω̃i,j (t)

transition probabilities.
In [25], the feasibility of the method was illustrated by applying it to a nonequilibrium system characterized by a

large phase space, and evolving according to a stochastic dynamics, namely the simple asymmetric exclusion process
(ASEP) [29]. Such a system consists in a one-dimensional lattice gas on a lattice of L sites. Each site of the model
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Fig. 5. Left: Plot of g(λ) as obtained by combining (39) and (43), for the ASEP model. The function g(λ) vanishes for λ = 0,1 which corre-
sponds to the normalization condition and to Seifert’s fluctuation relation [16], respectively. Right: Histogram of the entropy flow per time unit q ,
corresponding to 1000 unbiased trajectories. Full line: probability distribution function Φ(tfq, tf), obtained with the trajectory sampling algorithm.

is either empty or occupied by at most one particle. Each particle can jump into an empty nearest neighbor site with
transition rates per time unit K+ (rightward) and K− (leftward). The system is kept in an out-of-equilibrium steady
state since its first and last site are in contact with two particle reservoirs, at densities ρA and ρB respectively. By taking
ρA > ρB and K+ > K−, one observes a net particle current from the left to the right reservoir. In [25] we considered an
ASEP model with constant parameters ρA,ρB,K+,K−. Here we consider a system with time-dependent parameters.
We take K+ = 1, K− = K0−(1 + sin(2πt)) + ε, with K0− = 0.75, ε = 10−3, α = 1, γ = 0.27, β = 1, δ = 0.27, where
α-γ are the rates of jump from-into the left A reservoir, respectively, and β-δ are the rates of jump into-from the
right B reservoir, respectively. With this choice of parameters, at t = 2kπ , we have ρA = 0.75, ρB = 0.25 [30]. The
duration of a single trajectory is taken to be tf = 10 × 2π . A direct evaluation of the function g(λ) by solving the
2100 equations (38) is out of question. We thus apply our trajectory simulation approach to the ASEP model. We
consider trajectories with elementary time step τ = 0.01: at each time the transition probability between two states is
given by the transition matrix K̃ij (t). For each value of λ we generate N = 10 000 sample trajectories and calculate
the entropy flow Q, as defined by (36), for each trajectory. Then, for the given value of λ, by averaging over the N
trajectories, we compute the quantity 〈Q〉λ using (44). Finally, by combining (39) and (43), we obtain the function
g(λ) which governs the long time behavior of Ψ (λ, t). This function is plotted in Fig. 5, left panel. It can be seen
that it vanishes at λ = 0,1 and is symmetric with respect to λ = 1/2. The fact that g(0) = 0 corresponds trivially to
the normalization condition over all the possible trajectories. On the other hand, the fact that the function g vanishes
at λ = 1, is a nontrivial result, and corresponds to Seifert’s fluctuation theorem [16]. The symmetry around λ = 1/2
corresponds to the Gallavotti–Cohen fluctuation relation. We are now able to calculate the large-deviation function
f (q) defined in (41). We check as follows that the quantity f (q) actually gives the entropy distribution function
Φ(q, t) ∝ exp[tf (q)] for the present model. We simulate the unbiased diffusion process by using the transition matrix
Kij (t), and measure the entropy flow along 1000 trajectories. We then plot the histogram of the measured entropy flow
per time unit, together with the function exp[tf (q)], see Fig. 5, right panel. The agreement between the histogram and
the predicted entropy distribution Φ(q, t) is excellent.

5. Discussion

We have seen that the equations governing the evolution of the work and heat flow distributions in out-of-
equilibrium systems can be harnessed to yield interesting information. We have analyzed the generating function
of the work distribution in ‘large’ manipulated systems and shown that it may exhibit a ‘path phase transition’, which
corresponds to the presence of an exponential behavior in some work interval. On the other hand, we have shown that
it is possible to evaluate the large deviation function for the entropy flow in a stochastic process via a biased simulation
technique, and applied the method to exhibit the Gallavotti–Cohen symmetry in an out-of-equilibrium system with
periodically varying parameters. A similar result has been recently obtained by Ge and collaborators [31].
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