22 research outputs found

    Role of P-selectin in platelet sequestration in pulmonary capillaries during endotoxemia

    Get PDF
    Background: There is growing evidence that platelets accumulate in the lung and contribute to the pathogenesis of acute lung injury during endotoxemia. The aims of the present study were to localize platelet sequestration in the pulmonary microcirculation and to investigate the role of P-selectin as a molecular mechanism of platelet endothelial cell interaction. Methods: We used in vivo fluorescence microscopy to quantify the kinetics of fluorescently labeled erythrocytes and platelets in alveolar capillary networks in rabbit lungs. Results: Six hours after onset of endotoxin infusion we observed a massive rolling along and firm adherence of platelets to lung capillary endothelial cells whereas under control conditions no platelet sequestration was detected. P-selectin was expressed on the surface of separated platelets which were incubated with endotoxin and in lung tissue. Pretreatment of platelets with fucoidin, a P-selectin antagonist, significantly attenuated the endotoxin-induced platelet rolling and adherence. In contrast, intravenous infusion of fucoidin in endotoxin-treated rabbits did not inhibit platelet sequestration in pulmonary capillaries. Conclusion: We conclude that platelets accumulate in alveolar capillaries following endotoxemia. P-selectin expressed on the surface of platelets seems to play an important role in mediating this platelet-endothelial cell interaction. Copyright (c) 2006 S. Karger AG, Basel

    Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study

    Get PDF
    Tumour angiogenesis plays a key role in tumour growth, formation of metastasis, detection and treatment of malignant tumours. Recent investigations provided increasing evidence that quantitative analysis of tumour angiogenesis is an indispensable prerequisite for developing novel treatment strategies such as anti-angiogenic and antivascular treatment options. Therefore, it was our aim to establish and validate a new and versatile imaging technique, that is orthogonal polarisation spectral™ imaging, allowing for non-invasive quantitative imaging of tumour angiogenesis in vivo. Experiments were performed in amelanotic melanoma A-MEL 3 implanted in a transparent dorsal skinfold chamber of the hamster. Starting at day 0 after tumour cell implantation, animals were treated daily with the anti-angiogenic compound SU5416 (25 mg kg bw−1) or vehicle (control) only. Functional vessel density, diameter of microvessels and red blood cell velocity were visualised by both orthogonal polarisation spectral™ imaging and fluorescence microscopy and analysed using a digital image system. The morphological and functional properties of the tumour microvasculature could be clearly identified by orthogonal polarisation spectral™ imaging. Data for functional vessel density correlated excellently with data obtained by fluroescence microscopy (y=0.99x+0.48, r2=0.97, RS=0.98, precision: 8.22 cm−1 and bias: −0.32 cm−1). Correlation parameters for diameter of microvessels and red blood cell velocity were similar (r2=0.97, RS=0.99 and r2=0.93, RS=0.94 for diameter of microvessels and red blood cell velocity, respectively). Treatment with SU5416 reduced tumour angiogenesis. At day 3 and 6 after tumour cell implantation, respectively, functional vessel density was 4.8±2.1 and 87.2±10.2 cm−1 compared to values of control animals of 66.6±10.1 and 147.4±13.2 cm−1, respectively. In addition to the inhibition of tumour angiogenesis, tumour growth and the development of metastasis was strongly reduced in SU5416 treated animals. This new approach enables non-invasive, repeated and quantitative assessment of tumour vascular network and the effects of antiangiogenic treatment on tumour vasculature in vivo. Thus, quantification of tumour angiogenesis can be used to more accurately classify and monitor tumour biologic characteristics, and to explore aggressiveness of tumours

    Auditory event-related potentials

    Get PDF
    Auditory event related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) generated by the synchronous activity of large neural populations in the brain, which are time-locked to some actual or expected sound event
    corecore