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•TITLE 

Auditory event-related potentials 

• SYNONYMS 

Auditory event-related potential (AERP), auditory evoked potential (AEP), auditory evoked field (AEF) 

• DEFINITION 

Auditory event-related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) 

generated by the synchronous activity of large neural populations in the brain, which are time-locked to 

some actual or expected sound event (cf. the definition of ERP in EEG/MEG Evoked/Spontaneous 

Activity). 

• DETAILED DESCRIPTION 

Measurement and Derivation of AERPs/AEFs 

AERPs are derived from the continuous electro-/magnetoencephalogram (EEG/MEG, see EEG/MEG 

Evoked/Spontaneous Activity) by extracting segments of the signal (epochs) time-locked to some actual 

or expected acoustic event. AERPs were first recorded by Hallowell and Pauline A. Davis in 1935-36 

(Davis 1939; Davis et al. 1939). Because EEG/MEG is typically recorded non-invasively (outside the brain, 

e.g., from/around the scalp), these measures only reflect synchronous activity of large neural 

populations (for measuring methods and instrumentation, see EEG/MEG Evoked/Spontaneous 

Activity). Consequently, the acoustic events eliciting detectable AERPs consist of relatively large changes 

of spectral energy occurring within a relatively short time period, such as abrupt sound onsets, offsets, 

and changes within a continuous sound, because large acoustic changes affect many neurons within the 

auditory system and the short transition period synchronizes the responses of individual neurons (Nunez 

and Srinivasan 2006; cf. Auditory System (Anatomy, Physiology)). Furthermore, the expectation of such 

changes in the auditory input can elicit AERP responses even in the absence of actual stimulation (cf. the 

Omitted Stimulus Response in Long-Latency AERP Responses, below). 

The EEG/MEG signal mixes together on-going (spontaneous) neuroelectric activity with that elicited by 

the event. In order to better estimate the brain activity evoked by the event, it is usually repeated 

several times (typically 50 to 200 trials/sweeps, but up to 2000 times for Auditory Evoked Brainstem 

Responses) and the EEG/MEG segments are entered into some mathematical algorithm extracting the 

common part of the single-trial epochs. The most commonly used method for extracting AERPs aligns 

the single-trial epochs by their common onset and averages them point by point (the averaging method; 

Alain and Winkler 2012). There are many other algorithms for extracting ERPs from EEG/MEG, each 

based on different assumptions regarding the properties of the event-related response and the 

spontaneous EEG/MEG activity (for a general primer, see Luck, 2005; for detailed discussion of ERPs, see 

Handy, 2005; Fabiani et al 2007; for special considerations of MEG/AEFs, see Hansen et al 2010; 

Nagarajan et al 2012; for AERPs, see Picton 2010; Alain and Winkler 2012).  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/18405708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

EEG/MEG signals can contain components up to a few kHz with the faster components mainly 

originating from lower levels of the auditory system (cf. Auditory System (Anatomy, Physiology) and 

Auditory Evoked Brainstem Responses). Cortical contributions are much slower, up to a few tens of Hz. 

Unless one is specifically looking for very slow (Vanhatalo et al. 2010) or fast responses (Curio 2005), 

AERP recordings are usually made with bandpass filter settings of 0.01-50 Hz (or 250 Hz for extracting 

the Middle-Latency Response, see below). AERP amplitudes are typically below 10 µV with the reference 

(zero) level set to a baseline voltage (unless direct current is recorded), which is usually the average 

signal amplitude in a time interval preceding the AERP-eliciting event. Although in general, there is no 

unique solution to the inverse problem of finding the origins (the neural generators) of electromagnetic 

potentials measured outside the brain, by utilizing anatomy/physiology based constraints, the 

generators of AERPs can be located with reasonable accuracy in the brain (Nunez and Srinivasan 2006; 

see also Brain Imaging Methods). Due to the underlying physics, magnetic AEFs provide more accurate 

source localization compared with electric AERPs (Nunez and Srinivasan 2006; Nagarajan et al 2012). On 

the other hand, MEG only allows one to measure the tangential components of the electromagnetic 

activity in the brain, whereas EEG represents the full activity (Hansen et al 2010; see EEG/MEG 

Evoked/Spontaneous Activity). For AEFs, however, this limitation of the MEG signal is less severe than 

for other sensory/cognitive systems (Picton 2010; Nagarajan et al 2012). This is because a large part of 

the human auditory system in the cortex is located in the Sylvian fissure (see Auditory System 

(Anatomy, Physiology)), thus mostly producing magnetic signals which can be picked up by the MEG 

device. 
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AERP Waves, Components, Naming Conventions 

 

 

Figure 1. The Human Auditory Event-Related Potential (AERP), its main waveforms and its generators in the brain. The human 

AERP is composed of three groups of waveforms in three different latency ranges: the Auditory Brainstem Response (ABR) 

elicited within the first 8-10 ms from sound onset (green, bottom panel); the Middle-Latency Response (MLR), elicited within 

the 12-50 ms interval from sound onset (blue, central panel), and the Long-Latency Responses (LLR) emerging after 50 ms (red, 

top panel). The anatomical inset (left panel) highlights the main stages of the auditory pathway: “bn”, brainstem nuclei 

(including the cochlear nucleus, the superior olivary nucleus, the nucleus of the lateral lemniscus); “IC”, inferior colliculus; 

“MGB”, the medial geniculate body in the thalamus; “AC”, auditory cortex. The main assumed brain sources of the different 

AERPs are marked by colored circles: the ascending auditory pathway of the brainstem for ABRs (green); the thalamo-cortical 

loops and parts of auditory cortex for MLRs (blue); the auditory cortex for LLRs (red). AERPs can be broken down into a series of 

waves (see the naming convention in the main text). 

Figure 1 illustrates the progression of stimulus-related neuronal activity through the auditory system 

and the corresponding series of positive and negative waveforms observable in the AERP response. The 

earliest detectable responses (< ca. 10 ms after the acoustic event) originate from subcortical brain 
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structures and are termed the Auditory Brainstem Response (ABR; cf. Auditory Evoked Brainstem 

Responses). These are followed by AERP responses of thalamo-cortical origin (mainly from the primary 

auditory cortex), termed the Middle-Latency Response (MLR), elicited during the ca. 10-50 ms 

post-event latency range. The waveforms following are called Long-Latency Responses (LLR) and they 

originate largely from auditory cortex, but may also include contributions from parietal and frontal 

areas. 

ABRs are referred to by Roman numerals set in the order of their elicitation. MLR waveforms are usually 

denoted by their polarity at the vertex (approximately the top of the head); P for positive and N for 

negative polarity waves, and a letter or a number (see Figure 1). There are two conventions for the 

numbers in referring to LLRs: They either denote the serial order of the response starting with the first 

detected response (Davis 1939; Davis et al. 1939), termed N1, or they denote the typical peak latency of 

the waveform, such as P50 (the same as Pb or P1). However, as more and more responses elicited with 

the same polarity and in overlapping latency ranges have been discovered, both notations have become 

equivocal. Therefore, some recently discovered AERP responses are denoted by acronyms referring to 

their functional aspects, such as ORN (Object Related Negativity) or MMN (Mismatch Negativity) (for a 

detailed description of the variety of ERP responses, see Luck and Kappenman 2012; for AERPs, Picton 

2010; Alain and Winkler 2012). Magnetic response fields are usually marked by the letter ‘m’ appended 

to the name of the corresponding (A)ERP (e.g., N1m or N100m). 

Beyond the categorization based on the ERP peak latency there are two other typical distinctions in use. 

ERPs are termed obligatory or exogenous if they are elicited by each event irrespective of its relation to 

preceding or concurrent events or the person’s task, motivations, knowledge, etc. ERP components 

elicited only when there is a certain relation between the event and other events or some aspect of the 

person’s mental state are termed endogenous. Another distinction refers to the person’s voluntary 

activity with respect to the given stimulus event. ERP responses only elicited when the person has some 

explicit task involving the event (task-relevant even) are termed “active” ERP responses, while those 

elicited irrespective of the person’s task (task-irrelevant) are termed “passive” ERP responses. 

However, waveforms (peaks and dips) are not the true building blocks of ERP responses. The brain is a 

massively parallel processing instrument. Therefore, at any given moment of time, multiple processes 

may contribute to the observable waveform. For a neurophysiologically and functionally more 

meaningful decomposition of the complex neuroelectric response, one should be able to delineate how 

each of the concurrent processes contributed to the observed neuroelectric activity. This objective is 

reflected by Näätänen and Picton’s (1987) definition of an ERP component: ‘... we define an EP 

"component" as the contribution to the recorded waveform of a particular generator process, such as 

the activation of a localized area of cerebral cortex by a specific pattern of input’ (p. 376). Thus a 

component is defined by two criteria: 1) it should have a specific generator structure (e.g., secondary 

auditory and frontal cortices) and 2) it should be specific to some experimentally definable stimulus 

configuration (such as stimulus change after several stimulus repetitions). One could amend this 

definition with the person’s task/goals/knowledge regarding the given stimulus configuration (e.g., 

instructed to respond to the given stimulus event). However, the criteria set up by the above definition 

are seldom met in ERP research. This is partly due to limitations in separating generators (i.e., they are 
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usually distributed over an area in the brain and concurrently active processes often occupy areas very 

close, possibly even overlapping each other) as well as not knowing what stimulus configurations are 

handled by the same processes in the brain (are all expectation violations processed in the same way? – 

probably not). Thus in practice, the majority of ERP research reports use the terms “waveform” and 

“component” interchangeably, sometimes linking the effects of multiple manipulations to the same 

waveform, while at other times, attempting to separate the specific generator process affected by a 

given stimulus or state variable. 

There are many different processes, which can be reflected in AERPs. Early, obligatory responses 

typically reflect processes extracting auditory features, such as pitch, intensity, location, etc. Most AERP 

responses are sensitive to the amount of sound energy change and also to some aspects of the sound 

presentation rate or the ratio between sound and silence in time. These attributes of auditory stimuli 

belong to the primary descriptors of sound events as studied in psychoacoustics (Zwicker and Fastl 

1990). There are also AERP responses indicating the presence of automatic memory for sounds (Cowan 

1984; Demany and Semal 2007) and predictive processing of the auditory input (Friston and Kiebel 2009; 

Winkler et al. 2009). Further, some AERP responses reflect processes involved in auditory scene analysis 

(Bregman 1990), the separation of concurrently active sound sources in the environment and the 

formation of auditory perceptual objects (Griffiths and Warren 2004; Winkler et al 2009). Many AERP 

responses are also sensitive to attentional manipulations, including the active storage of sounds, 

selective attention, and target identification (Cowan 1988; Näätänen 1990). AERP responses specific to 

music and speech perception are described in the corresponding entries (Music Processing in the Brain 

and Electrophysiological Indices of Speech Processing). Therefore, AERPs have been extensively used to 

test theories of perception (e.g., Bregman 1990; Friston 2005), memory (e.g., Broadbent 1958; Baddeley 

and Hitch 1974; Cowan 2001), and attention (e.g., Broadbent 1958; Lavie 1995) and in recent years they 

have received increased interest from computational modelling (e.g., Garrido et al 2009; May and 

Tiitinen, 2010; Wacongne et al 2011) as well as from clinical applications (e.g., Picton 2010; Näätänen et 

al 2012). 

In the following, we shall describe the most important middle- and long-latency AERP responses (for the 

auditory brainstem responses, see Auditory Evoked Brainstem Responses). 

Middle-Latency AERP Responses 

Discrete auditory stimuli elicit a sequence of very small (<1 µV) negative and positive waveforms in the 

10-50 ms post-stimulus latency range, termed the Middle Latency Response (MLR). These responses can 

usually be best seen on signals recorded from the vertex with a mastoid or neck electrode as reference. 

The names and typical latencies of MLRs when elicited by click stimuli are: N0 (10 ms), P0 (15 ms), Na 

(20 ms), Pa (30 ms), and Nb (~40 ms) (see Picton 2010). An additional later waveform, the Pb, which 

peaks at about 50 ms from sound onset, is not always included amongst the MLR components, because 

it can also be obtained as the P50 or P1 with the filter bandwidth optimised for measuring LLRs (Regan, 

1989; see below). Because of their small amplitude and specific spectro-temporal characteristics, 

recording the MLR requires a) averaging across close to 1000 responses, b) appropriate filter settings 

(15-200 Hz; Bell et al. 2004), and c) careful removal of electromagnetic interference from power supplies 
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and lines, as a large part of the power of the MLR responses falls into the 50-60 Hz range. It is also 

important to avoid artefacts stemming from the myoelectric activity of the postauricular muscle (PAM), 

which lies behind the ear and is activated by loud sounds. This is usually achieved by placing the 

reference electrode on the neck or the sternum (Bell et al. 2004). Optimal sounds for eliciting clear MLRs 

are chirps and clicks, which have sharp onsets and a broad spectrum. Pure tones elicit MLRs of 

somewhat different morphology and smaller amplitude (Borgmann et al. 2001). However, MLRs can be 

obtained even with low-intensity tone bursts and relatively independently of the arousal level (Jones 

and Baxter 1988). 

No hemispheric asymmetry was found for MLRs as a function of the stimulated ear (Starr and Don 

1988). Based on precise structural maps of individual brains, the spatiotemporal pattern of neural 

activation giving rise to MLRs has been identified in supratemporal auditory areas using either current 

estimates derived from intracerebral recordings (Yvert et al. 2005) or equivalent dipole source modelling 

of scalp-recorded electric brain potentials (Yvert et al. 2001). These studies localized the earliest cortical 

activity (P0) at 16–19 ms from sound onset in the medial portions of Heschl’s sulcus (HS) and Heschl’s 

gyrus (HG), which likely correspond to primary auditory cortex (PAC). Na generation resulted from 

activity in more posterior regions of the same HS and HG areas. During the Pa/Pb complex, which 

includes also the Nb, the electric brain activity propagates in postero-anterior and medio-lateral 

directions in HG to the Planum Temporale (PT) and then to more anterior parts of the Superior Temporal 

Gyrus (STG), which correspond to secondary auditory areas. Also, frontal and parietal brain regions 

contribute as early as 30 ms from sound onset (the P30m AEF response) to MLR (Itoh et al. 2000). 

Animal studies have suggested that MLRs involve parallel thalamocortical activation of areas 41 (PAC), 

and 36 (parahippocampal gyrus), while human lesion studies have implicated contributions from 

thalamic projections to Pa (Kraus et al. 1982) and Na (Kaseda et al. 1991), supporting a thalamo-cortical 

interaction in MLR generation. 

With increasing sound intensity, MLR component latencies decrease while the amplitudes increase, 

although these effects may not uniformly apply to each component (e.g., Na, but not Pa; Seki et al. 

1991; Althen et al. 2011). Galambos et al. (1981) found a systematic reversed U-shaped relationship 

between the MLR amplitudes and stimulus presentation rate. At slow rates (≤10 Hz), peak-to-trough 

amplitudes are rather small (0.4 µV) and they reach the maximum of 1 µV by about 40 Hz presentation 

rate. This twofold increase in amplitude is due to superimposition of MLRs elicited by successive sounds. 

In contrast, at stimulation rates below and above 40 Hz out-of-phase responses to successive MLR 

responses cancel out each other. Some authors interpret this finding in terms of the “steady state” 

potentials (oscillatory activity generated in sensory cortical areas that is time-locked to the periodicity of 

stimulus presentation; typically measured from visual and somatosensory cortical areas; Rees et al. 

1986). Other authors assume that this phenomenon reflects the contribution of transient early evoked 

gamma-band oscillations to the auditory MLR (Basar et al. 1987; Pantev et al. 1991; Müller et al 2001; 

see EEG/MEG Evoked/Spontaneous Activity). Based on the stimulus-driven properties outlined above, 

MLRs have been considered exogenous AERP components. However, this view has been challenged by 

studies showing that MLRs are enhanced by strongly focused attention as early as 20 ms from sound 

onset (Woldorff and Hillyard 1991; Woldorff et al. 1993; cf. Attention-Related AERP Responses below), 
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and that MLR amplitudes are modulated as early as 50 ms from sound onset by task difficulty and 

whether or not a motor response is required (Ninomiya et al. 1997). Further, a recent series of studies 

has shown that MLRs are sensitive to stimulus probability in a feature-specific manner (Grimm and 

Escera 2011) with infrequent frequency changes enhancing the Pa (Slabu et al. 2010) and Nb (Grimm et 

al. 2011; Alho et al. 2012), whereas location changes enhance the Na (Sonnadara et al 2004; Grimm et 

al. 2012; Cornella et al. 2012). These results suggest that the MLR components reflect processes 

subserving higher-order sensory/cognitive functions. 

Long-Latency AERP Responses 

The auditory P1 (P50, Pb; Figure 1) component is at the border between MLR and LLR. In fact, when 

recorded and analysed with the filter setting most useful for deriving MLRs it is termed the Pb (see 

Middle-Latency AERP Responses, above). Using the parameters better suited for assessing LLRs, it 

typically peaks at about 50 ms from stimulus onset, appearing with positive polarity at the vertex and 

with reversed (negative) polarity at electrodes placed on the other side of the Sylvian fissure (e.g., 

electrodes placed over the mastoid apophysis). P1 is the first wave of the P1-N1-P2 obligatory 

exogenous AERP complex. It is thought to be generated bilaterally in primary auditory cortex, somewhat 

larger contra- than ipsilaterally for pure tones (Godey et al. 2001) and for other types of pitch-evoking 

sounds (Butler and Trainor 2012), with some spreading of the neuroelectric activity over its time course 

(Yvert et al. 2005). P1 is often used as a landmark for primary auditory cortex in AERP and AEF studies 

aimed at localizing the AERP components. Similarly to other obligatory AERP responses, P1 is highly 

sensitive to stimulus features and presentation rate (fully recovering within a few hundred milliseconds) 

as well as to attentional manipulations (Picton, 2010). The P1 was initially assumed to reflect neural 

activity involved in extracting auditory features (e.g. Näätänen and Winkler 1999). Recent evidence also 

links this response with the automatic separation of auditory streams (Gutschalk et al. 2005; Snyder et 

al. 2006; Szalárdy et al. 2013; cf. Auditory Perceptual Organisation): The amplitude of the P1 

component has been found to be modulated by whether a sequence with two interleaved sounds (e.g., 

ABABAB..., where ‘A’ and ‘B’ denote two different sounds) was perceived as a single coherent stream or 

in terms of two concurrent streams of sound (one made up of the ‘A’ and the other by the ‘B’ sounds). 

The auditory N1 (N100; Figure 1) wave was the first AERP response discovered historically (Davis et al. 

1939) as it is the most prominent deflection at the vertex. It is elicited by abrupt changes in sound 

energy, such as sound onsets and offsets (Näätänen and Picton, 1987). N1 typically peaks with negative 

polarity over the vertex ca. 100 ms after the eliciting event. It is also the most widely studied AERP 

response, having been linked with virtually any and all assumed auditory processing steps. The N1 wave 

has a complex generator (and thus subcomponent) structure (Näätänen and Picton, 1987). The 

subcomponent most tightly related to auditory processes (the supratemporal N1) is mostly located in 

secondary auditory areas (Godey et al. 2001), but it also overlaps the areas active during the P1 

component (Yvert et al. 2005). Similarly to the P1, N1 is larger contralaterally to the ear of stimulation 

and it is highly sensitive to stimulus features, presentation rate, and attentional manipulations. 

However, unlike the P1, the N1 recovery is much slower, extending beyond 10 s (Cowan et al. 1993). 

Further, N1 is sensitive to perceived sound features (e.g., pitch), as opposed to raw spectral parameters 

(such as the harmonic frequencies of a complex tone; Pantev et al. 1989b), although feature extraction 
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is not yet complete at the time the N1 wave is elicited (Winkler et al. 1997). The supratemporal N1 also 

shows both tonotopic (Pantev et al. 1988) and ampliotopic organization (Pantev et al. 1989a); that is, 

the location of its generator varies with the frequency and amplitude of pure tones. However, the N1 

generators are not sensitive to combinations of sound features (i.e., feature conjunctions).  

The processes reflected by N1 have been linked with onset and acoustic change detection (Näätänen 

1992), feature extraction, sensory memory (Lü et al. 1992; at least for sound features, Näätänen and 

Winkler 1999) and, recently, with auditory stream segregation (Gutschalk et al. 2005; Snyder et al. 2006; 

Szalárdy et al. 2013). For example, the length of the silent period after which an N1 with maximal 

amplitude is elicited by a sound is in good correspondence with the behaviourally measurable duration 

of auditory sensory memory traces (Cowan 1984). When sounds are presented in a train with <10 s 

silent intervals between them, the N1 amplitude decreases sharply within the first few presentations, 

reaching an asymptote within 5-10 presentations (e.g., Cowan et al. 1993). Based on this finding, some 

authors argue that through adaptation (see Adaptation in Sensory Cortices, Models of), the neurons 

underlying the N1 response may retain all sound information and thus provide the basis for detecting 

violations of auditory regularities (May and Tiitinen 2010; see also Auditory Change Detection). 

However, this hypothesis is debated in the literature (e.g., Näätänen et al. 2011). The sensitivity of the 

auditory N1 wave to selective attention initially suggested that the difference between the N1 responses 

elicited by task-relevant (attended) and task-irrelevant (unattended) sounds (the Nd; Hillyard et al. 

1973) may reflect an orientation to the attended auditory features and/or maintenance of the memory 

trace of the target sound. However, others argued that the differential response is separate from the 

N1, with the early part overlapping the N1 (termed Nde) assumed to reflect feature processing, and the 

later part (Ndl, also termed the Processing Negativity, PN; Näätänen 1982 see PN in Attention-Related 

AERP Responses) the maintenance of the attentional trace (Koch et al. 2005; Näätänen et al. 2011). 

Little is known about the auditory P2 (P175, P200; Figure 1) AERP response. It has been mostly studied 

within the P1-N1-P2 or N1-P2 complex. P2 typically peaks between 175 and 200 ms from the event 

onset with positive polarity over the vertex, inverting polarity over the Sylvian fissure. The generators of 

P2 lie anterior to those of the N1 in secondary auditory areas (Mäkelä et al. 1988; Bosnyak et al. 2004). 

Lesion (Woods et al. 1993) and maturation studies (Ponton et al. 2000) suggest that P2 may reflect the 

output of the mesencephalic reticular activating system (see Auditory System (Anatomy, Physiology)). 

Only a few studies have attempted to distinguish P2 from the N1 wave. The P2 amplitude was found to 

be more sensitive to perturbing the feedback of one’s voice than the N1 (Behroozmand et al. 2009) as 

well as to training with specific types of sounds (e.g., speech: Tremblay et al. 2001; music: Bosnyak et al. 

2004; or frequency discrimination: Tong et al. 2009). There are several speculations regarding the 

functions of the processes reflected by P2. Based on its assumed neural origin, P2 has been suggested to 

be generated by a pre-attentive alerting mechanism (Tremblay and Kraus 2002). Other suggestions 

include P2 reflecting stimulus classification (Crowley and Colrain 2004), modulating the threshold for 

conscious perception (Melara et al. 2002), protecting against interference from irrelevant stimuli 

(Garcia-Larrea et al. 1992), and the accuracy of memory traces in short-term memory (Atienza et al. 

2002). 
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Figure 2. Object Related Negativity (ORN). (A) Complex tones with the second of five harmonics tuned (green) or mistuned 

upwards by 8% (red) were presented equiprobably in a sequence. (B) Group-averaged (N=20, left; N=23, right) AERP responses 

elicited by tuned and mistuned complex tones recorded at the vertex, separately in the passive (participants disregarded the 

sounds) and the active condition (participants judged whether they heard one or two concurrent tones). Mistuned-minus-tuned 

difference waveforms (black) show a negative waveform appearing between 100 and 200 ms from sound onset in both task 

conditions. This is the ORN response (the range is marked by grey shading). The positive difference waveform observed in the 

300-500 ms latency range in the Active Condition is termed the P400. 

The Object Related Negativity (ORN) is elicited when more than one sound are simultaneously heard 

(Alain et al. 2001). Thus ORN reflects the outcome of the analysis of simultaneous (concurrent or 

vertical) auditory grouping cues (cf. Auditory Perceptual Organisation). Components of sounds emitted 

by a single source usually commence at the same time, they originate from the same spatial location 

and, if composed of discrete frequencies, they consist of harmonics derived from the same base (i.e., 

integer multiples of the same frequency). When the acoustic input does not meet these criteria, one 

usually experiences it as two or more concurrent sounds and ORN is elicited. ORN is typically recorded 

by presenting complex tones with one harmonic mistuned by 4% or more (Figure 2, panel A) and derived 

by subtracting the response to the one-sound stimulus (e.g., tuned tone) from that to the 
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multiple-sound stimulus (e.g., mistuned tone). ORN peaks between 140 and 180 ms from sound onset, 

with the largest amplitude over the fronto-central region of the scalp (Figure 2, panel B left). ORN has 

bilateral neural generators in auditory cortex, which are separate from those of the previously described 

obligatory AERP responses (Arnott et al. 2001). Some studies have indicated the existence of two 

independent lateralized generator processes, since although ORN is elicited even when most tones in 

the sequence have been mistuned, the probability of mistuned sounds within the sequence 

differentially affected the ORN generators in the two hemispheres (Bendixen et al. 2010). If the listener 

is instructed to respond when he/she hears two concurrent sounds, a late positive response (P400) is 

elicited in addition to the ORN (Figure 2, panel B right; Alain et al. 2001). 

The auditory N2 (N200; Figure 1) wave covers at least three (N2a or MMN, N2b, N2c; see Pritchard et al. 

1991), possibly more AERP components (Folstein and Van Petten 2008) appearing partly overlapping in 

time between 150 and 300 ms from the eliciting event. The somewhat earlier N2a or MMN does not 

require attention to be focused on the event (cf. MMN and Auditory Change Detection), whereas the 

later components are related to attentive monitoring of the acoustic input and they are not specific to 

sounds. 
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Figure 3. The Mismatch Negativity (MMN). (A) The experimental setup. Participants watched and listened to a movie presented 

on a TV screen directly in front of them. A series of footsteps perceived as moving from left to right (Test Sequence; upper 

arrow) or right to left (Control Sequence; lower arrow) were delivered by a pair of loudspeakers placed symmetrically on two 

sides, slightly behind the participant’s head. Ten out of the 11 different digitized natural footstep sounds (marked as black 

footprints on the blue arrows) could be perceived as a coherent sequence produced by someone walking across a room. The 

10
th

 footstep of the Test Sequence (“deviant”) and the 2
nd

 footstep of the Control Sequence (“control”) however sounded as if 

the person stepped on a different surface (marked by the white footprint on the blue arrows). Street noise was delivered 

through a loudspeaker placed directly behind the participant. (B) Group-averaged (N=8) AERP responses elicited by the deviant 

(continuous grey line) and the identical control sound (dashed grey line) measured from the frontal midline electrode. The 

MMN component, derived by subtracting the control response from that to the deviant (difference: black line) is marked with 

yellow-orange fill in the MMN latency range. The results illustrate that 1) MMN is only elicited when a sound violates a 

detected regularity, as the regular progression of footsteps needed to be detected and represented by the brain before it could 

be violated (which could not happen if only one “regular” footstep sound preceded the different one); 2) regularities can be 

extracted from acoustic variance as all regular footstep sounds were acoustically different; 3) regularities are separately 

maintained for concurrent auditory streams, as MMN was elicited for deviation in the footstep stream despite the presence of 

two other active sound sources; and 4) MMN elicitation does not require one to attend the stream in which a regularity has 

been violated, as participants in this experiment attended the movie, not the footsteps. (Adapted from Winkler et al. 2003.) 
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The Mismatch Negativity (MMN, N2a) is an AERP component elicited by violations of auditory 

regularities (Winkler 2007; Näätänen et al. 2011; Figure 3). MMN typically emerges between 100 and 

200 ms from the onset of deviation with frontocentrally dominant negative polarity that is inverted over 

the Sylvian fissure. MMN generators are located bilaterally in secondary-auditory and frontal areas (Alho 

1995). Although traditionally regarded as a component reflecting auditory change detection, technically, 

MMN does not reflect acoustic change, as for example, an alternating sequence of sounds does not elicit 

the MMN, whereas repeating a sound within such a sequence does (Horváth et al. 2001; see further 

details in Auditory Change Detection). MMN is derived by subtracting from the response elicited by the 

regularity-violating sound (termed “deviant”) the response elicited by a control sound. Optimally, the 

control sound is either identical or very similar to the deviant sound but does not violate any auditory 

regularity (for a detailed discussion of selecting the correct control, see Kujala et al. 2007). MMN is 

elicited even when the sounds are task-irrelevant, although it can be suppressed by strongly focusing 

attention on a parallel auditory channel and/or by contextual information (Sussman 2007). Initially 

discovered within the oddball paradigm (Näätänen et al. 1978), MMN has since been observed for 

violations of a large variety of abstract and complex regularities (Näätänen et al. 2001). In parallel, its 

interpretation shifted from MMN being an AERP correlate of auditory sensory memory (Näätänen and 

Winkler 1999; Cowan, 1984) tasked with detecting potentially relevant events in the auditory 

environment (Näätänen 1992) towards the compatible but more general notion of representing a 

process that updates the detected auditory regularities when their predictions are not met by the 

incoming sound (Winkler 2007). The latter interpretation links MMN with predictive coding theories 

(Friston 2005; Winkler and Czigler 2012) and posits that it plays a role in auditory stream segregation (cf. 

Auditory Perceptual Organisation) by maintaining the predictive models underlying auditory perceptual 

objects (Winkler et al. 2009). For a more detailed discussion of MMN, see the entry Auditory Change 

Detection. 
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Figure 4. The Repetition Positivity (RP). Left: Group-averaged (N=14) frontal midline (marked on the schematic head drawing at 

the top right corner) AERPs elicited by pure tones in a roving-standard stimulus paradigm (see in the text). The panel shows 

AERPs (averaged across different frequencies) elicited for the 3rd (blue), 6th (red) and 12th (green) repetition of the same tone. 

Note that the positivity covering the latency range of the P50-N1-P2 waveform complex emerges at the 6th repetition and 

becomes more pronounced by the 12
th

 repetition. Right: Difference waveforms resulting from subtracting the response to the 

3
rd

 repetition from that to the 12
th

 repetition under two conditions: Predictable Timing (PT: isochronous presentation, blue) and 

Unpredictable Timing (UT: the within-train inter-onset interval was varied, red). Note that the onset of RP is earlier (ca. 70 ms 

post-stimulus) for the predictable than for the unpredictable timing condition (ca. 170 ms). (Adapted from Costa-Faidella et al. 

2011a.) 

The Repetition Positivity (RP) appears as a fronto-central amplitude modulation of the P50, N1 and P2 

AERP responses (Figure 4); all three of them overlap the slow positive RP waveform so that the P50 and 

P2 become more positive and the N1 less negative with increasing number of repetitions of the eliciting 

sound (Haenschel et al. 2005; Costa-Faidella et al. 2011a; Costa-Faidella et al. 2011b). Similar stimulus 

repetition effects have been observed even at shorter latencies, during the MLR latency range (Dyson et 

al. 2005). The RP was first observed by Baldeweg et al. (2004) and characterized by Haenschel et al. 

(2005) in a study that aimed at investigating the neural correlates of the sensory memory trace 

implicated in the generation of the MMN. It was argued that the MMN amplitude dependence on the 

number of standard-stimulus repetitions preceding the deviant (e.g., Sams et al. 1983; Javitt et al. 1998) 

provides only an indirect measure of the strength of the underlying memory trace. The AERP elicited by 

the standard sound was expected to show effects of repetition suppression (Desimone 1996), as was 

observed for individual neurons in the primary auditory cortex of the cat (Ulanovsky et al. 2003), and 

this could provide a more direct measure of the strength of standard-stimulus memory trace. The typical 

paradigm use for obtaining the RP is called the "roving-standard" paradigm (introduced by Cowan et al. 

1993), as the classical oddball paradigm yields less clear results (Cooper et al. 2013). In the 

roving-standard paradigm, short trains of a repeating sound are delivered without a break with each 

train delivering a different sound (e.g., pure tones with different frequencies). The number of sound 

repetitions can also vary from train to train. To separate the RP from other concurrent AERP 
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components, the average response elicited by the second or the third sound of the train is subtracted 

from that elicited by the last tone of the train. The response to the first sound of the train is not used in 

the subtraction, because, due to the sound change between the trains, it should elicit the MMN 

(Haenschel et al., 2005; Costa-Faidella et al., 2011a, 2011b). The generator structure of the RP has not 

yet been fully characterized, but its early onset latency (commencing during the P50) and its long 

duration (ending during the P2) suggest that it may involve a distributed cortical network spanning from 

PAC up to auditory association areas (Baldweg 2007). The RP has been shown to simultaneously encode 

repetitions over multiple time scales (Costa-Faidella et al. 2011b; Cooper et al. 2013) similarly to single 

neurons observed in the cat's PAC (Ulanovsky et al. 2004). In addition to stimulus repetition, the RP is 

also sensitive to temporal regularities, such as whether the sounds are presented isochronously or with 

random timing: Costa-Faidella et al. (2011a) found earlier and larger RP’s for isochronous as compared 

with randomly timed tones in the trains. The latter result supports the predictive coding view of 

auditory deviance detection (Winkler 2007; Winkler and Czigler 2012), according to which detection of a 

regularity helps to encode the sensory memory trace of upcoming stimuli. Thus higher levels in the 

auditory processing hierarchy feed back to lower processing levels (Baldweg 2006). 

Auditory brain responses can also be elicited without hearing sounds. By omitting sounds from an 

isochronous sequence, one can record potentials time-locked to the moment when the sequence would 

have continued in a regular manner. The responses are termed the Omitted Stimulus Response (OSR). 

Some of them are elicited even when listeners don’t focus on the sounds, thus demonstrating a basic 

tendency of the auditory system to generate predictions for incoming sounds (Friston 2005; Winkler et 

al. 2009). It has been shown that when all features of the upcoming sound can be predicted from the 

preceding sound sequence, the OSR elicited by sound omission during the first 50 ms does not differ 

from the AERP elicited by the sound itself; however, when only the timing of the sound can be 

predicted, but not its features, the OSR starts to differ from the corresponding AERP at an earlier time 

(Bendixen et al. 2009). When sounds are predictably caused by some action of the listener, occasionally 

omitting one elicits an AERP that is initially (up to ca. 100 ms) morphologically similar to that elicited by 

the corresponding self-initiated sound; although the brain generators underlying the two responses 

partly differ from each other (SanMiguel et al. 2013). There is also an MMN-like OSR (Yabe et al. 1999). 

Elicitation of these responses is limited to inter-onset-intervals (IOI) shorter than ca. 200 ms (Horváth et 

al. 2007), except when the omitted sound is part of a pattern (Salisbury 2012). With longer IOIs, an early 

posterior negative (180 –280 ms) response and a later anterior positive wave have been obtained (Busse 

and Woldorff 2003). Further, ERP responses can also be elicited by mental imagery of sounds, although 

the results vary somewhat with the procedure employed (Meyer et al. 2007; Cebrian and Janata 2010; 

Wu et al. 2011). 

Attention-Related AERP Responses 

Attention-related AERPs include two distinct groups of responses: those related to involuntary (passive 

or exogenous) attention, and those related to voluntary, mainly selective attention. Regarding 

involuntary attention, at least three components have to be considered. The MMN (described above), or 

at least its frontal component (Giard et al. 1990; Deouell et al. 1998; Escera et al. 2000a; Deouell 2007), 

has been associated with involuntary attention (Näätänen and Michie 1979; Näätänen 1990; Näätänen 
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1992). Some studies have also related the activation of the supratemporal MMN generator with 

behavioural correlates of involuntary attention, i.e., delayed response times to target stimuli on a 

primary task (Yago et al. 2001). Näätänen and Michie (1979) proposed that the process generating MMN 

may issue a call for focal attention (Öhman, 1979) upon the detection of an unexpected change in the 

acoustic environment. Initial supportive evidence was provided by Schröger (1996; Schröger and Wolff 

1998a) and Escera et al. (1998), who introduced new auditory-auditory and auditory-visual distraction 

paradigms (for a more recent design, see Horváth and Winkler 2010). In these paradigms, participants 

are instructed to perform a primary auditory or visual task while ignoring rare task-irrelevant violations 

of an auditory regularity. Several studies have shown that these rare deviations prolong the reaction 

time and reduce the hit rate to target stimuli in the primary task (Escera and Corral 2007), thus 

demonstrating involuntary attention switching to the task-irrelevant deviations. 

Following the MMN, AERPs recorded in the distraction paradigm display a fronto-central positive 

deflection ca. 250-350 ms from stimulus onset, termed the P3a or novelty-P3. P3a was first described by 

Squires et al. (1975) as an earlier and more frontal positive deflection compared to the later and more 

posterior P3b component (for a review on P3b, see Donchin and Coles 1988). Whereas P3a is elicited by 

rare task-irrelevant sounds, P3b is elicited by target sounds (for a detailed comparison between the P3a 

and P3b, see Polich 2007). P3a is also elicited by widely different and "novel" (unique, categorically 

different from the context) sounds (Knight, 1984), hence it is sometimes referred to as the novelty-P3 

(for a discussion of whether the P3a and the novelty-P3 can be considered as the same ERP component, 

see Simons et al. 2001). Compelling evidence linking the novelty-P3 to the orienting reflex (OR; Sokolov 

1963) was obtained by Knight (1996), who found strong correlation between the novelty-P3 and one of 

the well-known autonomic components of OR, the galvanic skin response (GSR). The P3a is composed of 

two subcomponents distinctly differing in latency (early and late), scalp distribution, and sensitivity to 

attentional manipulations (Escera et al. 2000a; Yago et al. 2003). Source modelling of the magnetic 

counterpart of P3a (P3am) elicited by auditory deviants and novel sounds has revealed a genuine 

auditory cortical contribution to the early part of P3a (Alho et al. 1998). Whereas the early part of the 

novelty-P3 appears to be insensitive to attentional manipulations (Escera et al. 1998), the later part is 

modulated by working memory (SanMiguel et al. 2008) and emotional load (Domínguez-Borràs et al. 

2008). The early P3a is sensitive to stimulus-specific information predicting task-irrelevant auditory 

deviance, whereas the late P3a appears to be more closely correlated with distraction (Horváth et al. 

2011). P3a is widely regarded as a correlate of attention switching (Escera et al. 2000a; Friedman et al. 

2001). However, some recent studies suggested that although P3a is probably an antecedent of 

attention switching it can be elicited without a corresponding shift in the focus of attention (Rinne et al. 

2006; Horváth et al. 2008b; Horváth and Winkler 2010; Hölig and Berti 2010). 

The third involuntary attention related AERP component is the so-called Reorienting Negativity (RON), 

first described by Schröger and Wolff (1998b). RON is observed as a negative deflection following the 

P3a (Escera and Corral 2007). RON has been suggested to reflect processes of reorientation (restoring 

the task set of the primary task) after a distracting stimulus. RON is composed of two subcomponents 

(Escera et al. 2001; Munka and Berti 2006; Berti 2008) the functional characterization of which are still 

debated (Escera et al. 2001; Berti 2008). The cortical generators of RON are not well known. Horváth et 



16 
 

al. (2008a) found contributions from primary motor areas to RON, suggesting that action-selection 

related activity plays a role in the reorientation process. Both P3a and RON as well as behavioural 

correlates of distraction (but not MMN) are eliminated or at least strongly diminished when the 

task-irrelevant deviant is predicted by a visual cue (Sussman et al. 2003; Horváth and Bendixen 2012). 

Cues that provide more specific information about the distracting stimulus are more effective in 

preventing distraction and the elicitation of P3a and RON (Horváth et al. 2011). 

Selective attention related AERPs have been traditionally studied in the context of the classical "cocktail-

party" situation described by Cherry (1953). In the simplified dichotic listening model of this situation, 

participants are exposed to two concurrent messages (one to each ear). Using this paradigm, many 

studies attempted to decide between the "early" (Treisman 1964; Treisman 1998; Broadbent 1970) 

versus "late" selection theories of attention (Deutsch and Deutsch 1963; Norman 1968). These theories 

of attention primarily differ from each other in the placement of a selective filter within the chain of 

information processing (Broadbent 1958): whereas early selection theories suggest that stimuli are 

selected for elaborate processing based on simple sensory features (such as pitch) and unattended 

stimuli do not receive processing beyond extracting these sensory features, late selection theories 

propose that all stimuli receive elaborate processing and stimuli can therefore be selected on the basis 

of higher-order properties. (Note that more recent theories of attention do not posit a single selective 

filter; see e.g., Lavie 1995.) The seminal observation by Hillyard et al. (1973) that selective attention 

enhances the N1 amplitude for stimuli presented in the to-be-attended channel favoured the early 

filtering view. However, the findings of Näätanen et al. (1978) of a long-lasting negativity elicited by all 

attended stimuli, the Processing Negativity (PN; Näätänen 1982) challenged this interpretation providing 

support to late-selection theories. Subsequent studies confirmed both of these effects (Okita 1979; 

Hansen and Hillyard 1980; Näätänen et al. 1980) and proposed subtraction of the AERP elicited by the 

non-attended stimuli from that elicited by the attended stimuli as the method to reveal the Negative 

Difference (Nd) potential to isolate the AERP correlates of selective attention (Nd; Hansen and Hillyard 

1980). The Nd is composed of two parts: the early one, termed Nde,  associated with a gating mechanism 

preferentially processing the task-relevant stimulus features, and a later part (Ndl) related to the 

maintenance of the attentional trace (correspond to the PN). The functional distinction between the Nd 

and PN has been debated in detail (Alho et al. 1986a; Alho et al. 1986b; Alho et al. 1994; Teder et al. 

1993). Studies showing very early selective attention effects, e.g., at the latency range of the MLR 

(Woldorff et al. 1987; Woldorff and Hillyard 1991) and possibly even earlier, at the level of the cochlea 

(Giard et al. 1994) support the interpretation of the Nde as a correlate of gating by simple stimulus 

features. On the other hand, the fact, that the more similar the stimulus to the target the longer the 

corresponding PN, supports the notion of a comparison with the attentional trace. The frontal scalp 

distribution of Ndl (Woods and Clayworth 1987) and the cerebral sources of PN (Giard et al., 1988) are 

also compatible with the memory-based interpretation of Ndl. There are several further ERP 

components related to various facets of attention. However, these are not specific to the auditory 

modality and thus fall outside the scope of this entry (cf. the entry EEG/MEG Evoked/Spontaneous 

Activity). 

AERPs Reflecting Speech and Music processing 
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The sounds of speech and music may elicit any and all the AERP responses described above. There are, 

however, also some ERP responses, which arise from events that can be defined in syntactic or semantic 

terms. It should be noted that most speech-related ERPs can also be elicited through reading. Most 

AERP responses specific to speech and music have been obtained in paradigms, in which the expectation 

for the most likely (or simplest) continuation of a sequence of words has been violated. For example, 

violating the expectation for the first phoneme of the upcoming word elicits a negative shift in the 

150-350 ms latency range, termed the Phonological Mismatch Negativity (PMN; Connolly and Phillips, 

1994). It is, however, debated, whether this response can be separated from that elicited by words, 

which are semantically incongruent with respect to the preceding context (D’Arcy et al. 2004; Van den 

Brink and Hagoort 2004). Violating speech syntax can lead to the elicitation of the Early Left Anterior 

Negativity (ELAN) in the 150-200 or the Left Anterior Negativity (LAN) in the 300-500 ms latency range, 

depending on the type of violation, whereas potentially correct but syntactically complex sentences 

elicit the Syntactic Positive Shift (SPS or P600) (for reviews, see Friederici 2002; Hagoort 2008). Violating 

semantic expectations in speech elicits the N400 component (Kutas and Federmeier 2011). Musical 

syntax violations elicit an ELAN-like but predominantly right-hemispheric response, the Early Right 

Anterior Negativity (ERAN) in the 180-200 ms or the Right Anterior-Temporal Negativity (RATN) in the 

200-400 ms latency range and N400 has been also be observed in musical models of semantic 

incongruence (Koelsch and Siebel 2005). For a more detailed discussion of speech- and music-related 

ERPs, see Electrophysiological Indices of Speech Processing and Music Processing in the Brain. 

Development of AERPs 

Previous sections described the AERP responses elicited in adults. Although AERPs can be recorded 

immediately after birth and even in foetuses within the womb (Draganova et al. 2005), their morphology 

and functional characteristics widely differ from the adult responses. Further, different AERP 

components become mature at different times and they often undergo several intermediate phases 

before reaching adult-like characteristics. As this topic would require a full entry of its own, here we 

point the reader to some of the existing literature. The most complete reviews of the maturation of 

AERPs from infancy to adolescence were provided by Wunderlich et al. (2006) and Coch and Gullick 

(2012). The early infantile development of the AERP components has been summarized by Kushnerenko 

(2003); for the maturation of the AERPs reflecting auditory change detection, see Jing and Benasich 

(2006), for large deviations, see Kushnerenko et al. (2013). The maturation of obligatory AERP 

components from 5 to 20 years of age is covered in Ponton et al. (2000; 2002). AERP maturation during 

adolescence is described in Bishop et al. (2007). Summarizing these works, one can conclude that the 

adult AERP morphology characterizes humans from 17/18 years onward and remains more or less 

unchanged through ageing. There are, however several findings of differences between elderly and 

young adults in specific tasks (for a review, see Friedman 2012). 

Modelling AERP’s - some general principles 

Theories that seek to explain some of the LLRs have also been explored using more tightly constrained 

mathematical and computational models. Here we focus on models of the mismatch negativity (MMN) 

component, as it has arguably received the most widespread attention. Theoretically, MMN has been 
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variously associated with change detection, adaptation, prediction error, novelty detection, and model 

adjustment, although for some years, there has been controversy as to whether anything more than 

adaptation is required to explain the experimental data (e.g., see May and Tiitinen 2010 vs. Näätänen et 

al. 2011).  

Using a modelling framework in which exemplars of each of the competing explanations, listed above, 

were expressed as mathematical functions of stimulation-induced changes in an unobservable ‘internal 

state’ and resulting observable (EEG) responses, Lieder et al. (2013) investigated the ability of each 

model to explain empirical MMN responses on a trial-by-trial basis. The models were expressed in a 

rather abstract way, as summarized below, with simple expressions for internal state and response 

functions (intended to predict stimulus-evoked MMN amplitudes), that captured a range of possibilities 

for each of the categories. Change detection was modelled with the internal state simply a record of the 

log frequency of the previous tone in the sequence, and response functions as: a) a flag, set if a 

difference was detected, b) the signed and c) absolute difference between the frequency of the 

incoming and previous tone; giving three change detection models. Adaptation was modelled by the 

exponential decay and recovery of the internal state variable associated with each stimulus frequency, 

and the response function as a read out of the internal state corresponding to the incoming stimulus. 

The internal state for the prediction error, novelty detection, and model adjustment accounts was 

modelled as a Bayesian observer’s belief in the tone category of the stimulus, with the evolution of tone 

category modelled according to a transition matrix derived incrementally from the data according to the 

‘free-energy-minimisation principle’ (Friston 2005). Two prediction error response functions were 

modelled: prediction errors with respect to sensory input and internal state, respectively. Novelty 

response functions were modelled as surprise about sensory input and temporal structure (tone 

category), respectively. Model adjustment response functions were modelled in terms of adjustments to 

the parameters of the internal model, e.g. mean frequency of a category, expected sequence length, 

transition probabilities between categories. Simulations showed that, at least at this level of detail, 

prediction error (with respect to tone category) and model adjustment models (change in expected 

sequence length, change in transition probabilities between categories), accounted best for the data 

(Lieder et al. 2013). 

On the other hand, May and Tiitinen (2010) have argued strongly that their neural model which includes 

adaptation on the inputs can explain all MMN data to date; the key mechanism being the activation of 

fresh afferents by stimuli that deviate in some way from the standards. In this account, MMN is seen as 

a modulation of the N1 component rather than as a separate component in its own right. The model, 

consisting of a bank of neural oscillators driven via adapting input synapses, can account for the latency 

as well as the amplitude of the MMN (May et al. 1999). In addition, extending the model to include local 

inhibitory feedback circuits, results in a set of non-homogeneous band-pass temporal filters that can 

also support the topographic representation of stimulus presentation rate (May and Tiitinen 2001). 

Ringing in these filters is argued to account for the MMN elicited by a missing expected sound. Diverse 

receptive fields, e.g. to frequency modulations, also allow the model to simulate MMN responses 

elicited by violations of some abstract rules, such as a repeated tone in a random pattern of ascending 

tone pairs. However, although adaptation is claimed to be the key to MMN, the model responses also 
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depend upon the amplification of recurrent excitation, lateral inhibition, and the connectivity of the 

network. The model thus essentially contains within its changing pattern of adaptation and inhibition, a 

memory trace of recent activation, and in this sense, contains a memory component embedded within 

it.  

Building on their previous work on a brain-inspired architecture for learning long-term representations 

of action-perception associations, Garagnani and Pulvermüller (2011) proposed a similar model in 

which, in addition to adaptation and inhibition, spreading activation through circuits strengthened by 

learning (long term memory) caused MMN responses to familiar deviants to be larger than that to 

unfamiliar deviants. They pointed out that only through some form of long term memory mechanism 

could this differential sensitivity of MMN to familiarity/unfamiliarity be explained. By modelling multiple 

auditory areas they also provided a novel explanation for differences between the N1 and MMN 

generators, with N1 being generated in primary auditory areas subject to strong adaptation, and MMN 

in addition to adaptation also being influenced by reverberating excitation within distributed memory 

circuits. However, the model processes sequences of static patterns, and as presented, it is not able to 

account for the sensitivity of MMN to unexpected changes in the timing of sequences, such as the 

omission MMN (Yabe et al. 1997). 

A model that explicitly includes a separate memory module to keep track of the short term history of 

activation and simulates MMN at a finer level of granularity, i.e. at the level of spiking neurons, was 

proposed by Wacongne et al. (2012). Memory in the model is implemented using a set of neurons 

organised into a delay line, i.e. their connectivity ensures that activity passes in one direction across the 

population, and the progress of activity through this population explicitly represents the timing of the 

previous event, up to 400 ms. Separate delay lines are used for each tone frequency modelled, thereby 

also recording their identity. The model simulates MMN by means of prediction errors. Through 

exposure to tone sequences it learns to generate a prediction of the next tone (both its timing and 

identity) in a repeating pattern. These predictions are compared with the incoming stimuli in the 

prediction error units, where mismatches result in a larger signal than matches. The model learns 

transition probabilities between successive events, as long as they fit within its fixed memory span. In 

contrast to the adaptation account of MMN, the model relies exclusively on prediction errors. An 

experiment designed to distinguish between these two explanations for MMN found evidence in favour 

of a predictive error model of MMN (Wacongne et al. 2012), a result compatible with the findings of 

Lieder et al. (2013). 

A predictive coding account of MMN has also been modelled at a more abstract level using a Kalman 

filtering (Kalman 1960) approach (Kaya and Elhilali 2013). In this case the timing of events is modelled 

using a separate filter from the one used to model feature distributions. The advantage of the Kalman 

filter is that provides a well-understood way to recursively estimate the system state, refined through 

analysis of prediction errors, and has been shown to be implementable in the form of a neural network 

(Szirtes et al. 2005). The model adapts to the variance in observations and, with time, as its predictions 

improve so its tolerance decreases, making it more sensitive to outliers. Deviants are detected as events 

not predicted by any existing filter, and trigger the creation of a new set of Kalman filters intended to 
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model a potentially new sound source, making this an interesting framework for more general auditory 

scene analysis problems, e.g. (Chakrabarty and Elhilali 2013). 

In summary, computational models of the theoretical accounts of MMN have begun to be explored. 

However, so far they have either only been implemented at a rather abstract level; e.g. (Garrido et al. 

2009; Lieder et al. 2013; Kaya & Elhilali, 2013), focus exclusively on a single mechanism for explaining 

MMN; e.g. (May and Tiitinen 2001; Wacongne et al. 2012) or account only for MMN responses to 

unexpected within-event properties (Garagnani and Pulvermüller 2008, 2011). The finding, using 

dynamic causal modelling, that modifications to both feed forward and feedback connections are 

required (Garrido et al. 2009), and evidence in auditory cortex for adaptation, short term and long term 

plasticity, recurrent excitation and inhibition suggests that MMN in the brain may actually depend on 

the combination of all these factors. Furthermore, while the learning of transition probabilities may be 

sufficient for some scenarios, in the short term at least, people become sensitive to specific tone 

patterns; it is unclear whether any of the models discussed here could respond differentially to 

violations of more extended pattern sequences or more abstract rules. 

Utility of AERP for clinical practice 

Clinical applications of AERPs range from routine practice in audiology, neurotology, neurology, and 

neurosurgery by ABRs and MLRs (Picton 2010) to highly promising tools for cognitive assessment by 

some long-latency endogenous components, of which MMN is a prime example. In audiology, ABRs are 

used universally for hearing screening in neonates failing the Otoacoustic Emission test (OAEs; Robinette 

and Glatkke 2007). Currently, about 97% of infants are screened for hearing impairment in the USA 

(Gaffney et al. 2010). ABRs, elicited by click stimuli, are used as a tool for objective audiometry, and 

ABRs elicited by pure tones can also be used for assessing frequency-specific thresholds in infants 

(Stapells and Oates 1997; Stapells et al. 1993). In neurotology and neurology, AERPs are combined with 

the patient's medical history and with an extensive battery of tests for evaluating the anatomy and 

functional properties of the ear-brain relationship (Picton, 2010) in search for an extensive range of 

disorders of the ear and the auditory pathway, such as Ménière's disease and demyelinating lesions 

such as Multiple Sclerosis. In these applications, AERPs are used to determine conduction times along 

the auditory pathway and to localize the anatomical locus of the brain damage with the help of the 

known origin of the different ABR waveforms (see reviews in Baloh 1997; Chiappa 1997; Lustig et al. 

2003). In addition, ABRs are used in combination with evoked potentials from other modalities to 

monitor coma prognosis (Guérit 2005; Fischer et al. 2006; see below), or in isolation to corroborate 

brain death (Machado et al. 1991). In the surgical theatre, MLR is used to monitor the depth of 

anaesthesia in adults (Bell et al. 2004) and children (Kuhnle et al. 2013). It has been recently shown that, 

compared with the traditional clinical assessment of depth of anaesthesia, MLR monitoring led to a 

reduction in a) the amount anaesthetic drug requirement, b) the use of vasopressors to manage 

hypotension, and c) consequential cognitive impairment (Jildenstål et al. 2011). 

Regarding cognitive AEPRs, MMN (see above and the entry Auditory Change Detection) has shown 

great promise for potential clinical applications (Näätänen and Escera 2000). Part of this expectation 

stems from the fact that MMN indexes auditory discrimination accuracy without the requirement to 
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perform some task (i.e., it can be recorded without the patient's collaboration and even in newborn 

infants; see Alho et al. 1990) and that it can be elicited very reliably, compared with other cognitive 

event-related potentials (Escera and Grau 1996; Escera et al. 2000b). Yet, after two decades of clinical 

research (see Näätänen et al. 2012), except for coma monitoring and prognosis no routine clinical 

application has emerged for the MMN. As for coma monitoring, it has been demonstrated that the 

presence of MMN in a comatose patient is associated with the return of consciousness (Kane et al. 1993; 

Fischer et al. 1999), and that as part of a battery of physiological indicators of brain activity, MMN can 

be used in the decision tree for estimating awakening from coma (Fischer et al. 2006). Given the large 

variety of disorders and clinical conditions in which impaired MMNs have been observed, it has been 

suggested that, rather than providing a specific diagnostic measure for any particular disease, the MMN 

provides an objective index of dysfunction of N-metyl-D-aspartate (NMDA) receptor-mediated cognitive 

functions (Näätänen et al. 2011). In general, due to their high variability and complex functional and 

anatomical origin, endogenous AERPs can only be employed within large test batteries for diagnostic 

and monitoring purposes. However, some of these responses provided new insights into the cognitive 

and emotional aspects of various neurological and psychiatric disorders (e.g., for schizophrenia research 

using MMN, see Mondragón-Maya 2011). 

AERPs: Advantages and limitations 

(A)ERPs provide information about sound-elicited neural activity with millisecond accuracy. Thus they 

are ideally suited for breaking down the steps of auditory information processing in the brain in the 

empiricist tradition. It is thus understandable that some of the most recent theoretical developments in 

the field (e.g., predictive coding theories; Friston, 2005) trace back their roots to Helmholtz’ (1860/1962) 

theories of perception. High temporal resolution coupled with the possibility of finding the neural 

generators of the various ERP responses is also appealing to neurologists and medical doctors, in 

general. By finding correlations between AERPs and conscious perception on the one hand (such as the 

link between ORN and the perception of two concurrent sounds; Alain et al 2001), and discovering the 

neural mechanisms underlying the observed AERP waveforms on the other hand (e.g., linking SSA and 

the deviance-detection responses observed in the MLR latency range; Slabu et al. 2010; Grimm et al. 

2011; for a review, see Ayala and Malmierca 2013), AERPs can provide a crucial link in understanding the 

neural mechanisms of perception. 

However, there are a number of limitations to the utility of (A)ERPs for research and applications. Firstly, 

they only reflect a part of the information processing in the brain. When the number of neurons 

involved in some process is relatively small, or the neurons are distributed over a large area in the brain, 

or the neural activation is not fully time-locked to the given auditory event, no ERP can be measured. 

Other methods, such as time-frequency analysis of the EEG, provide better information about these 

types of processes. AERPs are usually smaller than their visual counterparts. Consequently the signal to 

noise ratio, where activity not time-locked to the sound onset is regarded as noise, is quite low. This 

forces one to present many trials to the participant and rely on assumptions which are not fully met by 

the EEG signal (such as the independence of the signal from the noise, ergodicity, etc.). Further, the 

accuracy of localizing the sources of neuroelectric activity is limited by the quality of constraints (e.g., 

anatomical knowledge) required to solve the inverse problem, and the dispersion of the electrical fields. 
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Although magnetoencephalography provides a better spatial resolution, as was already mentioned, AEFs 

only reflect tangential sources, but not radial ones, thus restricting their general usefulness. In terms of 

spatial accuracy, other neuroimaging methods, such as fMRI, provide a superior alternative (at the cost 

of much lower temporal resolution). Further, the correspondence between perception and AERP 

responses is often not straightforward, as can be gleaned from the often controversial psychological 

interpretations mentioned in the main text of this entry. Few AERP components can be consistently 

observed across different stimulus paradigms, thus limiting the validity of most process-based 

interpretations. Efforts to discover the neural bases of ERP responses must overcome many obstacles. 

One of the most difficult problems is that whereas individual neurons can mainly be studied in animal 

models due to the invasive nature of such investigations, it is often difficult to assess how well findings 

in various species can be extended to characterizing the human brain. Finally, the biggest issue for 

clinical applications is, as was already mentioned, the large inter- and even intra-individual variability of 

AERPs. 

In summary, AERPs can potentially provide much information about sound processing in the brain, but 

for extracting this information, better theories and more tightly constrained models, which can integrate 

information from the diverse fields of anatomy, neuroscience, and psychology, are required. 
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