1,031 research outputs found

    Clinical and biochemical landmarks in systemic autoinflammatory diseases.

    Get PDF
    Systemic autoinflammatory diseases are a group of inherited disorders of the innate immune system characterized by seemingly unprovoked inflammation recurring at variable intervals and involving skin, serosal membranes, joints, and gastrointestinal apparatus, with reactive amyloidosis as a possible severe long-term complication. Recent advances in genetics and molecular biology have improved our understanding of the pathogenesis of these diseases, including familial Mediterranean fever, mevalonate kinase deficiency syndrome, tumor necrosis factor receptor-associated periodic syndrome, cryopyrin-associated periodic syndromes, and hereditary pyogenic and granulomatous disorders: the vast majority of these conditions are related to the activation of the interleukin-1 pathway, which results in (or from?) a common unifying pathogenetic mechanism. Their diagnostic identification derives from the combination of clinical data, evaluation of acute phase reactants, clinical efficacy in response to specific drugs, and recognition of specific mutations in the relevant genes, although genetic tests may be unconstructive in some cases. This review will discuss clinical and laboratory clues useful for a diagnostic approach to systemic autoinflammatory diseases

    Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain

    Get PDF
    VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult

    Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    Get PDF
    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics

    Whole genome sequencing reveals a 7 base-pair deletion in DMD exon 42 in a dog with muscular dystrophy

    Get PDF
    Dystrophin is a key cytoskeletal protein coded by the Duchenne muscular dystrophy (DMD) gene located on the X-chromosome. Truncating mutations in the DMD gene cause loss of dystrophin and the classical DMD clinical syndrome. Spontaneous DMD gene mutations and associated phenotypes occur in several other species. The mdx mouse model and the golden retriever muscular dystrophy (GRMD) canine model have been used extensively to study DMD disease pathogenesis and show efficacy and side effects of putative treatments. Certain DMD gene mutations in high-risk, the so-called hot spot areas can be particularly helpful in modeling molecular therapies. Identification of specific mutations has been greatly enhanced by new genomic methods. Whole genome, next generation sequencing (WGS) has been recently used to define DMD patient mutations, but has not been used in dystrophic dogs. A dystrophin-deficient Cavalier King Charles Spaniel (CKCS) dog was evaluated at the functional, histopathological, biochemical, and molecular level. The affected dog’s phenotype was compared to the previously reported canine dystrophinopathies. WGS was then used to detect a 7 base pair deletion in DMD exon 42 (c.6051-6057delTCTCAAT mRNA), predicting a frameshift in gene transcription and truncation of dystrophin protein translation. The deletion was confirmed with conventional PCR and Sanger sequencing. This mutation is in a secondary DMD gene hotspot area distinct from the one identified earlier at the 5′ donor splice site of intron 50 in the CKCS breed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-016-9675-2) contains supplementary material, which is available to authorized users

    Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    Get PDF
    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of that risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortia and population based resources, we find genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both inherited and de novo variation, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in an ASD or other neuropsychiatric disorder diagnosis. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology

    SHANK3 controls maturation of social reward circuits in the VTA.

    Get PDF
    Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of autism spectrum disorder. How SHANK3 insufficiency affects specific neural circuits and how this is related to specific symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) and GABA cell-type-specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors mGluR1 during the first postnatal week restored DA neuron excitatory synapse transmission and partially rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired ventral tegmental area function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy

    Epidermal growth factor signalling and bone metastasis

    Get PDF
    Epidermal growth factor (EGF) signalling is well known for its multifaceted functions in development and tissue homoeostasis. The EGF family of ligands and receptors (ERBB family) have also been extensively investigated for their roles in promoting tumourigenesis and metastasis in a variety of cancer types. Recent findings indicate that EGF signalling is an important mediator of bone metastasis in breast, prostate and kidney cancers. The EGF signalling stimulates the growth of bone metastasis directly by increasing tumour cell proliferation and indirectly by engaging bone stromal cell in metastasis-promoting activities. Therefore, molecular targeting of ERBB receptors may benefit patients with bone metastasis and should be evaluated in clinical trials

    Developing an objective indicator of fatigue: An alternative mobile version of the Psychomotor Vigilance Task (m-PVT)

    Get PDF
    Approximately 20% of the working population report symptoms of feeling fatigued at work. The aim of the study was to investigate whether an alternative mobile version of the ‘gold standard’ Psychomotor Vigilance Task (PVT) could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc., using different mobile devices. 26 participants mean age 20 years completed a 25-min reaction time study using an alternative mobile version of the Psychomotor Vigilance Task (m-PVT) that was implemented on either an Apple iPhone 6s Plus or a Samsung Galaxy Tab 4. Participants attended two sessions: a morning and an afternoon session held on two consecutive days counterbalanced. It was found that the iPhone 6s Plus generated both mean speed responses (1/RTs) and mean reaction times (RTs) that were comparable to those observed in the literature while the Galaxy Tab 4 generated significantly lower 1/RTs and slower RTs than those found with the iPhone 6s Plus. Furthermore, it was also found that the iPhone 6s Plus was sensitive enough to detect lower mean speed of responses (1/RTs) and significantly slower mean reaction times (RTs) after 10-min on the m-PVT. In contrast, it was also found that the Galaxy Tab 4 generated mean number of lapses that were significant after 5-min on the m-PVT. These findings seem to indicate that the m-PVT could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc
    corecore