1,183 research outputs found

    A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58.

    Full text link
    Escherichia coli ST58 has recently emerged as a globally disseminated uropathogen that often progresses to sepsis. Unlike most pandemic extra-intestinal pathogenic E. coli (ExPEC), which belong to pathogenic phylogroup B2, ST58 belongs to the environmental/commensal phylogroup B1. Here, we present a pan-genomic analysis of a global collection of 752 ST58 isolates from diverse sources. We identify a large ST58 sub-lineage characterized by near ubiquitous carriage of ColV plasmids, which carry genes encoding virulence factors, and by a distinct accessory genome including genes typical of the Yersiniabactin High Pathogenicity Island. This sub-lineage includes three-quarters of all ExPEC sequences in our study and has a broad host range, although poultry and porcine sources predominate. By contrast, strains isolated from cattle often lack ColV plasmids. Our data indicate that ColV plasmid acquisition contributed to the divergence of the major ST58 sub-lineage, and different sub-lineages inhabit poultry, swine and cattle

    Updating requirements for Endangered, Threatened and Protected species MSC Fisheries Standard v3.0 to operationalise best practices

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Bycatch in fisheries is a key threat to non-target marine species, particularly for those species that have life histories with low productivity or poor conservation status. In this paper, the requirements of the new Marine Stewardship Council (MSC) Fisheries Standard (hereafter “the Standard”) are summarised relevant to Endangered, Threatened and Protected (ETP) species. This covers both how species are designated as ETP, and how performance of management is assessed with respect to ETP species, when scoring fisheries against the Standard. The process used to select these requirements is described, including a review of the requirements for earlier versions of the Standard and the scoring of these requirements in assessment reports for a selection of fisheries that have achieved MSC certification. The review identified a lack of consistency in the implementation of scoring guidelines, which was in part due to a lack of clarity in the requirements of the Standard. The revised Standard has been designed to achieve more consistent implementation of the requirements with respect to management of impacts on ETP species, and to align the requirements more closely with global best practice. The requirements may be used as a template for fisheries managers seeking to prioritise bycatch species for improved management and setting more specific and measurable objectives in relation to population status and minimising mortalities.Marine Stewardship Counci

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Unique White Dwarfs Accompanying Recycled Pulsars

    Get PDF
    I introduce the two classes of pulsar, white-dwarf binaries, and describe for each what we have learned from a specific system, PSR J1012+5307 and PSR B0655+64, respectively, summarising what has been done, presenting new results, and discussing what the future may hold. Briefly, for the companion of PSR J1012+5307 we find a DA spectrum, and infer a mass of about 0.16Msun, the lowest among all spectroscopically identified white dwarfs. Combined with a radial-velocity orbit, a neutron-star mass between 1.5 and 3.2Msun (95% conf.) is derived. The companion of PSR B0655+64 shows strong Swan C2 bands, i.e., it is a DQ star. Unlike anything reported for other DQs, however, it shows variations in strength of the bands by a factor two. Most likely, the variations are periodic, with a period of about 9.7h. This is substantially shorter than the 1-day orbital period, which can likely be understood in terms of its past evolution.Comment: 6 pages of text and 2 figures, LaTeX using crckapb.sty (included) and psfig.sty. To appear in Proc. 10th European Workshop on white dwarfs (Eds. Isern, Hernanz, & Garcia-Berro

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    DNA index determination with Automated Cellular Imaging System (ACIS) in Barrett's esophagus: Comparison with CAS 200

    Get PDF
    BACKGROUND: For solid tumors, image cytometry has been shown to be more sensitive for diagnosing DNA content abnormalities (aneuploidy) than flow cytometry. Image cytometry has often been performed using the semi-automated CAS 200 system. Recently, an Automated Cellular Imaging System (ACIS) was introduced to determine DNA content (DNA index), but it has not been validated. METHODS: Using the CAS 200 system and ACIS, we compared the DNA index (DI) obtained from the same archived formalin-fixed and paraffin embedded tissue samples from Barrett's esophagus related lesions, including samples with specialized intestinal metaplasia without dysplasia, low-grade dysplasia, high-grade dysplasia and adenocarcinoma. RESULTS: Although there was a very good correlation between the DI values determined by ACIS and CAS 200, the former was 25% more sensitive in detecting aneuploidy. ACIS yielded a mean DI value 18% higher than that obtained by CAS 200 (p < 0.001; paired t test). In addition, the average time required to perform a DNA ploidy analysis was shorter with the ACIS (30–40 min) than with the CAS 200 (40–70 min). Results obtained by ACIS gave excellent inter-and intra-observer variability (coefficient of correlation >0.9 for both, p < 0.0001). CONCLUSION: Compared with the CAS 200, the ACIS is a more sensitive and less time consuming technique for determining DNA ploidy. Results obtained by ACIS are also highly reproducible

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore