898 research outputs found

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Top-k String Auto-Completion with Synonyms

    Get PDF
    Auto-completion is one of the most prominent features of modern information systems. The existing solutions of auto-completion provide the suggestions based on the beginning of the currently input character sequence (i.e. prefix). However, in many real applications, one entity often has synonyms or abbreviations. For example, "DBMS" is an abbreviation of "Database Management Systems". In this paper, we study a novel type of auto-completion by using synonyms and abbreviations. We propose three trie-based algorithms to solve the top-k auto-completion with synonyms; each one with different space and time complexity trade-offs. Experiments on large-scale datasets show that it is possible to support effective and efficient synonym-based retrieval of completions of a million strings with thousands of synonyms rules at about a microsecond per-completion, while taking small space overhead (i.e. 160-200 bytes per string).Peer reviewe

    Fabricating subwavelength fiber tapers using a CO2 laser

    Get PDF
    A fabricating system of fiber tapers using a CO2 laser as its heat source has been developed. According to the self-regulating effect of the CO2 laser in the process of melt-drawn fiber, the relation between the required CO2 laser power and the moving distance of the motorized stage in the fabrication process of fiber taper is found. The dependence of the required laser power and the moving distance of one motorized stage running is of approximately linear increment, which largely simplifies the computer control. With the relation plus regulating the other parameters, a 1.3 mum diameter fiber taper is fabricated. The tapers fabricated by our system have good shape and size for optical device applications

    Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.</p> <p>Methods</p> <p>The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).</p> <p>Results</p> <p>Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.</p> <p>Conclusions</p> <p>Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.</p

    Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis

    Get PDF
    We study coarse pattern formation in a cellular automaton modelling a spatially-extended stochastic neural network. The model, originally proposed by Gong and Robinson (Phys Rev E 85(5):055,101(R), 2012), is known to support stationary and travelling bumps of localised activity. We pose the model on a ring and study the existence and stability of these patterns in various limits using a combination of analytical and numerical techniques. In a purely deterministic version of the model, posed on a continuum, we construct bumps and travelling waves analytically using standard interface methods from neural field theory. In a stochastic version with Heaviside firing rate, we construct approximate analytical probability mass functions associated with bumps and travelling waves. In the full stochastic model posed on a discrete lattice, where a coarse analytic description is unavailable, we compute patterns and their linear stability using equation-free methods. The lifting procedure used in the coarse time-stepper is informed by the analysis in the deterministic and stochastic limits. In all settings, we identify the synaptic profile as a mesoscopic variable, and the width of the corresponding activity set as a macroscopic variable. Stationary and travelling bumps have similar meso- and macroscopic profiles, but different microscopic structure, hence we propose lifting operators which use microscopic motifs to disambiguate them. We provide numerical evidence that waves are supported by a combination of high synaptic gain and long refractory times, while meandering bumps are elicited by short refractory times

    Classifying RNA-Binding Proteins Based on Electrostatic Properties

    Get PDF
    Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs

    Two-Stage Clustering (TSC): A Pipeline for Selecting Operational Taxonomic Units for the High-Throughput Sequencing of PCR Amplicons

    Get PDF
    Clustering 16S/18S rRNA amplicon sequences into operational taxonomic units (OTUs) is a critical step for the bioinformatic analysis of microbial diversity. Here, we report a pipeline for selecting OTUs with a relatively low computational demand and a high degree of accuracy. This pipeline is referred to as two-stage clustering (TSC) because it divides tags into two groups according to their abundance and clusters them sequentially. The more abundant group is clustered using a hierarchical algorithm similar to that in ESPRIT, which has a high degree of accuracy but is computationally costly for large datasets. The rarer group, which includes the majority of tags, is then heuristically clustered to improve efficiency. To further improve the computational efficiency and accuracy, two preclustering steps are implemented. To maintain clustering accuracy, all tags are grouped into an OTU depending on their pairwise Needleman-Wunsch distance. This method not only improved the computational efficiency but also mitigated the spurious OTU estimation from ‘noise’ sequences. In addition, OTUs clustered using TSC showed comparable or improved performance in beta-diversity comparisons compared to existing OTU selection methods. This study suggests that the distribution of sequencing datasets is a useful property for improving the computational efficiency and increasing the clustering accuracy of the high-throughput sequencing of PCR amplicons. The software and user guide are freely available at http://hwzhoulab.smu.edu.cn/paperdata/
    corecore