907 research outputs found
Investigation of a Lomentospora prolificans case cluster with whole genome sequencing
Lomentospora prolificans has caused outbreaks in immunocompromised patients. We performed whole genome sequencing (WGS) on 4 L. prolificans isolates from infections occurring during an 8-month period in the haematology unit at Hospital 1., and 2 isolates from unrelated infections at Hospital 2., showing a high number of mutational differences (>10,000 single nucleotide polymorphisms) between L. prolificans isolates from Hospital 1. Novel typing of isolates by WGS did not demonstrate a single causative strain
Lyapunov exponents for products of complex Gaussian random matrices
The exact value of the Lyapunov exponents for the random matrix product with each , where
is a fixed positive definite matrix and a complex Gaussian matrix with entries standard complex normals, are
calculated. Also obtained is an exact expression for the sum of the Lyapunov
exponents in both the complex and real cases, and the Lyapunov exponents for
diffusing complex matrices.Comment: 15 page
Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings
Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal
barrier coatings have been developed via low activity chemical vapor deposition and high activity
pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on
NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed
when switching processes. The structural evolution of each coating at various stages of the
fabrication process has been and subsequent cyclic oxidation is presented, and the relevant
interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of
these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the
formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in
need of further improvement in both cases
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems
Local-spin-density functional calculations may be affected by severe errors
when applied to the study of magnetic and strongly-correlated materials. Some
of these faults can be traced back to the presence of the spurious
self-interaction in the density functional. Since the application of a fully
self-consistent self-interaction correction is highly demanding even for
moderately large systems, we pursue a strategy of approximating the
self-interaction corrected potential with a non-local, pseudopotential-like
projector, first generated within the isolated atom and then updated during the
self-consistent cycle in the crystal. This scheme, whose implementation is
totally uncomplicated and particularly suited for the pseudopotental formalism,
dramatically improves the LSDA results for a variety of compounds with a
minimal increase of computing cost.Comment: 18 pages, 14 figure
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS)
process via the H exclusive reaction in the nucleon resonance
region, at backward angles. Results are presented for the -dependence at
fixed GeV, and for the -dependence at fixed near 1.5 GeV.
The VCS data show resonant structures in the first and second resonance
regions. The observed -dependence is smooth. The measured ratio of
H to H cross sections emphasizes the different
sensitivity of these two reactions to the various nucleon resonances. Finally,
when compared to Real Compton Scattering (RCS) at high energy and large angles,
our VCS data at the highest (1.8-1.9 GeV) show a striking -
independence, which may suggest a transition to a perturbative scattering
mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys
SummaryAntigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- âŠ