738 research outputs found

    The Risk of Gambling Problems in the General Population: A Reconsideration

    Get PDF
    We examine the manner in which the population prevalence of disordered gambling has usually been estimated, on the basis of surveys that suffer from a potential sample selection bias. General population surveys screen respondents using seemingly innocuous “trigger,” “gateway” or “diagnostic stem” questions, applied before they ask the actual questions about gambling behavior and attitudes. Modeling the latent sample selection behavior generated by these trigger questions using up-to-date econometrics for sample selection bias correction leads to dramatically different inferences about population prevalence and comorbidities with other psychiatric disorders. The population prevalence of problem or pathological gambling in the United States is inferred to be 7.7%, rather than 1.3% when this behavioral response is ignored. Comorbidities are inferred to be much smaller than the received wisdom, particularly when considering the marginal association with other mental health problems rather than the total association. The issues identified here apply, in principle, to every psychiatric disorder covered by standard mental health surveys, and not just gambling disorder. We discuss ways in which these behavioral biases can be mitigated in future surveys

    Emergent Universe in Brane World Scenario with Schwarzschild-de Sitter Bulk

    Full text link
    A model of an emergent universe is obtained in brane world. Here the bulk energy is in the form of cosmological constant, while the brane consists of a fluid satisfying an equation of state of the form pb=1/3ρbp_{b}={1/3} \rho_{b}, which is effectively a radiation equation of state at high energies. It is shown that with the positive bulk cosmological constant, one of our models represents an emergent universe.Comment: 4 pages, no figure, accepted for publication in Gen.Relt.Gra

    Superconducting p-branes and Extremal Black Holes

    Get PDF
    In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of `Meissner effect' which is characteristic of superconducting media. We review some of the evidence for this effect, and do present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the worldvolume of `light' superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of `heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure

    Rotating Dilaton Black Holes

    Get PDF
    We consider the axially symmetric coupled system of gravitation, electromagnetism and a dilaton field. Reducing from four to three dimensions, the system is described by gravity coupled to a non-linear σ\sigma-model. We find the target space isometries and use them to generate new solutions. It seems that it is only possible to generate rotating solutions from non-rotating ones for the special cases when the dilaton coupling parameter a=0,¹3a=0, \pm \sqrt{3}. For those particular values, the target space symmetry is enlarged.Comment: 11 pages, RevTex, one figure include

    Identifying and prioritising services in European terrestrial and freshwater ecosystems

    Get PDF
    Ecosystems are multifunctional and provide humanity with a broad array of vital services. Effective management of services requires an improved evidence base, identifying the role of ecosystems in delivering multiple services, which can assist policy-makers in maintaining them. Here, information from the literature and scientific experts was used to systematically document the importance of services and identify trends in their use and status over time for the main terrestrial and freshwater ecosystems in Europe. The results from this review show that intensively managed ecosystems contribute mostly to vital provisioning services (e.g. agro-ecosystems provide food via crops and livestock, and forests provide wood), while semi-natural ecosystems (e.g. grasslands and mountains) are key contributors of genetic resources and cultural services (e.g. aesthetic values and sense of place). The most recent European trends in human use of services show increases in demand for crops from agro-ecosystems, timber from forests, water flow regulation from rivers, wetlands and mountains, and recreation and ecotourism in most ecosystems, but decreases in livestock production, freshwater capture fisheries, wild foods and virtually all services associated with ecosystems which have considerably decreased in area (e.g. semi-natural grasslands). The condition of the majority of services show either a degraded or mixed status across Europe with the exception of recent enhancements in timber production in forests and mountains, freshwater provision, water/erosion/natural hazard regulation and recreation/ecotourism in mountains, and climate regulation in forests. Key gaps in knowledge were evident for certain services across all ecosystems, including the provision of biochemicals and natural medicines, genetic resources and the regulating services of seed dispersal, pest/disease regulation and invasion resistance

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London

    Get PDF
    In urban areas, a highly variable mixture of pollutants is deposited as particulate matter. The concentration and bioavailability of individual pollutants within particles need to be characterised to ascertain the risks to ecological receptors. This study, carried out at two urban parks, measured the deposition and water-solubility of metals to four species common to UK urban areas. Foliar Cd, Cr, Cu, Fe, Ni, Pb and Zn concentrations were elevated in at least one species compared with those from a rural control site. Concentrations were, however, only affected by distance to road in nettle and, to a lesser extent, birch leaves. Greater concentrations of metal were observed in these species compared to cypress and maple possibly due to differences in plant morphology and leaf surfaces. Solubility appeared to be linked to the size fraction and, therefore, origin of the metal with those present predominantly in the coarse fraction exhibiting low solubility. Š 2009

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions ∑i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and ∑i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ∀ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c−c-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc

    Sport concussion assessment tool-Third edition normative reference values for professional Rugby Union players

    Get PDF
    Objectives: To establish normative reference data for the SCAT3 in professional Rugby Union players. Design: A cross sectional study in professional Rugby Union players competing in national and international professional competitions between 2015 and 2016. Methods: The SCAT3 was administered pre-season or prior to tournaments. Data was collected electronically using a custom tablet application. SCAT3 subcomponents distributions were described and normative ranges determined using percentile cut-offs for average, unusually low/high, and extremely low/high scores. The association between player characteristics and performance in SCAT3 subcomponents was also investigated in exploratory analyses. Results: A total of 3611 professional Rugby Union players were included. The most common baseline symptom was fatigue (14%). The symptom score median (md) was 0 (interquartile range (IQR) = 0-1). Symptom severity md was 0 (IQR = 0-1). The md of the SAC score was 28 (IQR = 26-29). The md of the MBESS was 2 (IQR = 0-4). The Tandem gait md was 11.1. s (IQR = 10.0-12.7. s). Upper limb coordination was normal in 98.4%. Younger age and lower educational level were associated with worse performance on delayed recall and reverse month sub-components of the SCAT3 (p. < . 0.0001). No statistically significant differences in SCAT3 subcomponents were evident across gender. Conclusions: Representative normative reference values for the SCAT3 among professional Rugby Union players are provided. Baseline performance on concentration and delayed recall tests may be lower in younger athletes or in those with lower educational level
    • …
    corecore