166 research outputs found

    Citizen Desires, Policy Outcomes, and Community Control

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68810/2/10.1177_107808747200800107.pd

    Scaling in Late Stage Spinodal Decomposition with Quenched Disorder

    Full text link
    We study the late stages of spinodal decomposition in a Ginzburg-Landau mean field model with quenched disorder. Random spatial dependence in the coupling constants is introduced to model the quenched disorder. The effect of the disorder on the scaling of the structure factor and on the domain growth is investigated in both the zero temperature limit and at finite temperature. In particular, we find that at zero temperature the domain size, R(t)R(t), scales with the amplitude, AA, of the quenched disorder as R(t)=A−ÎČf(t/A−γ)R(t) = A^{-\beta} f(t/A^{-\gamma}) with ÎČ≃1.0\beta \simeq 1.0 and γ≃3.0\gamma \simeq 3.0 in two dimensions. We show that ÎČ/Îł=α\beta/\gamma = \alpha, where α\alpha is the Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not observed and we suggest that the scaling also depends on temperature and AA. We discuss these results in the context of Monte Carlo and cell dynamical models for phase separation in systems with quenched disorder, and propose that in a Monte Carlo simulation the concentration of impurities, cc, is related to AA by A∌c1/dA \sim c^{1/d}.Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via email [email protected]

    Singularities and closed time-like curves in type IIB 1/2 BPS geometries

    Full text link
    We study in detail the moduli space of solutions discovered in LLM relaxing the constraint that guarantees the absence of singularities. The solutions fall into three classes, non-singular, null-singular and time machines with a time-like naked singularity. We study the general features of these metrics and prove that there are actually just two generic classes of space-times - those with null singularities are in the same class as the non-singular metrics. AdS/CFT seems to provide a dual description only for the first of these two types of space-time in terms of a unitary CFT indicating the possible existence of a chronology protection mechanism for this class of geometries.Comment: 34 pages, 7 figures, LaTeX. References adde

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    Production of singlet P-wave ccˉc \bar c and bbˉb \bar b states

    Full text link
    No spin-singlet bbˉb \bar b quarkonium state has yet been observed. In this paper we discuss the production of the singlet P-wave bbˉb\bar{b} and ccˉc\bar{c} 1P1^1P_1 states hbh_b and hch_c. We consider two possibilities. In the first the 1P1^1P_1 states are produced via the electromagnetic cascades \ups(3S) \to \eta_b(2S) + \gamma \to h_b + \gamma \gamma \to \eta_b +\gamma\gamma\gamma and ψâ€Č→ηcâ€Č+γ→hc+γγ→ηc+γγγ\psi'\to \eta_c' + \gamma \to h_c + \gamma \gamma \to \eta_c + \gamma\gamma\gamma. A more promising process consists of single pion transition to the 1P1^1P_1 state followed by the radiative transition to the 11S01^1S_0 state: \ups(3S)\to h_b + \pi^0 \to \eta_b + \pi^0 +\gamma and ψâ€Č→hc+π0→ηc+π0+Îł\psi' \to h_c + \pi^0 \to \eta_c + \pi^0 +\gamma. For a million \ups(3S) or ψâ€Č\psi''s produced we expect these processes to produce several hundred events.Comment: 13 pages, LaTeX, 1 figure, to be published Phys. Rev. D. Some equation numbers and one table number correcte

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed
    • 

    corecore