11 research outputs found

    Identification of a novel stretch-responsive skeletal muscle gene (smpx)

    No full text
    Skeletal muscle is able to respond to a range of stimuli, including stretch and increased load, by increasing in diameter and length in the absence of myofiber division. This type of cellular growth (hypertrophy) is a highly complex process involving division of muscle precursor cells (myoblasts) and their fusion to existing muscle fibers as well as increased protein synthesis and decreased protein degradation. Underlying the alterations in protein levels are increases in a range of specific mRNAs including those coding for structural proteins and proteins that regulate the hypertrophic process. Seven days of passive stretch in vivo of tibialis anterior (TA) muscle has been shown to elicit muscle hypertrophy. We have identified a cDNA corresponding to an mRNA that exhibits increased expression in response to 7 days of passive stretch imposed on TA muscles in vivo. This 944-bp novel murine transcript is expressed primarily in cardiac and skeletal muscle and to a lesser extent in brain. Translation of the transcript revealed an open reading frame of 85 amino acids encoding a nuclear localization signal and two overlapping casein kinase II phosphorylation sites. This gene has been called â\u80\u9csmall muscle protein (X chromosome)â\u80\u9d (Smpx; HGMW-approved human gene symbol SMPX) and we hypothesize that it plays a role in skeletal muscle hypertrophy

    Expression of Ankrd2 in fast and slow muscles and its response to stretch are consistent with a role in slow muscle function.

    No full text
    Item does not contain fulltextIn striated muscle, the structural genes associated with muscle fiber phenotype determination as well as muscle mass accretion are regulated largely by mechanical stimuli. Passive stretch of skeletal muscle stimulates muscle growth/hypertrophy and an increased expression of slow muscle genes. We previously identified Ankyrin repeat-domain protein (Ankrd2) as a novel transcript expressed in fast tibialis anterior muscles after 7 days of passive stretch immobilization in vivo. Here, we test the hypothesis that the expression of Ankrd2 in stretched fast muscle is associated with the stretch-induced expression of slow muscle phenotype rather than the hypertrophic response. Our results show that, in 4- and 7-day stretched tibialis anterior muscle, the expression of Ankrd2 mRNA and protein was significantly upregulated (P > 0.001). However, in fast muscles of kyphoscoliotic mutant mice, which lack the hypertrophic response to overload but have a slower muscle phenotype than wild-type, Ankrd2 expression was significantly upregulated. The distribution pattern of Ankrd2 in fast and slow muscle is also in accord with their slow fiber composition. Furthermore, it was markedly downregulated in denervated rat soleus muscle, which produces a pronounced shift toward the fast muscle phenotype. Using a sensitive proteomics approach (Ciphergen Technology), we observed that Ankrd2 protein was undetectable in soleus after 4 wk of denervation. We suggest that Ankrd2, which is also a titin binding protein, is a stretch-response gene associated with slow muscle function and that it is part of a separate mechanotransduction system to the one that regulates muscle mass

    Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target

    No full text
    Breast cancers are the most common cancer-affecting women; critically the identification of novel biomarkers for improving early detection, stratification and differentiation from benign tumours is important for the reduction of morbidity and mortality. To identify and functionally characterise potential biomarkers, we used mass spectrometry (MS) to analyse serum samples representing control, benign breast disease (BBD) and invasive breast cancer (IDC) patients. Complementary and multidimensional proteomic approaches were used to identify and validate novel serum markers. Annexin A3 (ANX A3) was found to be differentially expressed amongst different breast pathologies. The diagnostic value of serum ANX A3 was subsequently validated by ELISA in an independent serum set representing the three groups. Here, ANX A3 was significantly upregulated in the benign disease group sera compared with other groups (P < 0.0005). In addition, paired breast tissue immunostaining confirmed that ANX A3 was abundantly expressed in benign and to a lesser extent malignant neoplastic epithelium. Finally, we illustrated ANX A3 expression in cell culture lysates and conditioned media from neoplastic breast cell lines, and its role in neoplastic breast cell migration in vitro. This study confirms the novel role of ANX A3 as a mammary biomarker, regulator and therapeutic target

    The Functional Consequences of Dystrophin Deficiency in Skeletal Muscles

    No full text

    Calcium Misregulation and the Pathogenesis of Muscular Dystrophy

    No full text
    corecore