126 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Learning instruments

    No full text

    Confronting scale in watershed development in India

    No full text
    The issue of scale is examined in the context of a watershed development policy (WSD) in India. WSD policy goals, by improving the natural resource base, aim to improve the livelihoods of rural communities through increased sustainable production. It has generally been practiced at a micro-level of less than 500 ha, as this was seen to be a scale that would encourage participative management. There has been some concern that this land area may be too small and may lead to less than optimal hydrological, economic and equity outcomes. As a result there has been a move to create guidelines for meso-scale WSD of above 5,000 ha in an endeavour to improve outcomes. A multidisciplinary team was assembled to evaluate the proposed meso-scale approach. In developing an adequate methodology for the evaluation it soon became clear that scale in itself was not the only determinant of success. The effect of geographical scale (or level) on WSD is determined by the variation in other drivers that will influence WSD success such as hydrological conditions, land use and available institutional structures. How this should be interpreted at different levels in the light of interactions between biophysical and socio-economic scales is discussed

    Predicting community behaviour in relation to wastewater reuse: What drives decisions to accept or reject?

    No full text
    This reports the results of a three-year investigation which aimed to develop a measurement of prediction of community intended behaviour in relation to the reuse of different wastewaters for different uses. It has been apparent that communities support the concept of water reuse as a means of responsible water resources management. However, many technically sound schemes internationally have failed because communities have rejected them. Little has been known of how people make their decisions to accept or reject schemes. Public acceptance, therefore, has been viewed as an “obstacle” to implementing reuse schemes and so the emphasis has been principally on persuasion. However, it is now generally accepted that social marketing and persuasion are ineffective. Until now, it has been difficult to know what to replace them with as there have been no systematic programs of social investigation to identify the different factors that might influence public perceptions or mediate their decision making. International literature reviews found little that specifically related to the recycling of water, however, a number of parallel literatures (eg. food technology) provided some insights. Therefore, a research program was designed to systematically investigate, identify, measure and test the major factors that govern people’s decisions about whether to use recycled water for different uses or whether to reject the schemes
    corecore