1,030 research outputs found

    A study of the social and physical environment in catering kitchens and the role of the chef in promoting positive health and safety behaviour

    Get PDF
    This is the account of a mixed method study of chefs and their kitchens in order to identify the nature of their workplace and how this affects their ability to manage health and safety in the kitchen. It included extended periods of observation, monitoring of physical parameters, analysis of records of reported accidents, and a series of reflexive interviews. The findings were integrated and then fed back in a smaller number of second interviews in order to test whether the findings fitted in with the chefs' understanding of their world. Major factors identified included survival in a market environment, the status of the chef (and the kitchen) within organisations, marked autocracy of chefs, and an increasing tempo building up to service time with commensurate heat, noise, and activity. In particular during the crescendo, a threshold shift in risk tolerance was identified. The factors, their interplay, and their implications for health and safety in the catering kitchen are discussed

    Strange stars in Krori-Barua space-time

    Full text link
    The singularity space-time metric obtained by Krori and Barua\cite{Krori1975} satisfies the physical requirements of a realistic star. Consequently, we explore the possibility of applying the Krori and Barua model to describe ultra-compact objects like strange stars. For it to become a viable model for strange stars, bounds on the model parameters have been obtained. Consequences of a mathematical description to model strange stars have been analyzed.Comment: 9 pages (two column), 12 figures. Some changes have been made. " To appear in European Physical Journal C

    Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data

    Full text link
    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree—a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds

    Recovering Joys Law as a Function of Solar Cycle, Hemisphere, and Longitude

    Full text link
    Bipolar active regions in both hemispheres tend to be tilted with respect to the East West equator of the Sun in accordance with Joys law that describes the average tilt angle as a function of latitude. Mt. Wilson observatory data from 1917 to 1985 are used to analyze the active-region tilt angle as a function of solar cycle, hemisphere, and longitude, in addition to the more common dependence on latitude. Our main results are as follows: i) We recommend a revision of Joys law toward a weaker dependence on latitude (slope of 0.13 to 0.26) and without forcing the tilt to zero at the Equator. ii) We determine that the hemispheric mean tilt value of active regions varies with each solar cycle, although the noise from a stochastic process dominates and does not allow for a determination of the slope of Joys law on an 11-year time scale. iii) The hemispheric difference in mean tilt angles, 1.1 degrees + 0.27, over Cycles 16 to 21 was significant to a three-sigma level, with average tilt angles in the northern and southern hemispheres of 4.7 degrees + 0.26 and 3.6 degrees + 0.27 respectively. iv) Area-weighted mean tilt angles normalized by latitude for Cycles 15 to 21 anticorrelate with cycle strength for the southern hemisphere and whole-Sun data, confirming previous results by Dasi-Espuig, Solanki, Krivova, et al. (2010, Astron. Astrophys. 518, A7). The northern hemispheric mean tilt angles do not show a dependence on cycle strength. vi) Mean tilt angles do not show a dependence on longitude for any hemisphere or cycle. In addition, the standard deviation of the mean tilt is 29 to 31 degrees for all cycles and hemispheres indicating that the scatter is due to the same consistent process even if the mean tilt angles vary.Comment: 13 pages, 4 figures, 3 table

    The Transplanted Appropriate Adult Scheme in China

    Get PDF
    Borrowed from England and Wales, the Chinese Appropriate Adult Scheme involves a dynamic of selective adaptation. This article analyses two salient features of the appropriate adult scheme within the Chinese context, in comparison with its counterpart in England and Wales: its complementarity of the juvenile's parent, and the passive role that appropriate adults play during pretrial interrogations. Drawing upon empirical evidence, the article argues that the transplanted Chinese appropriate adult scheme has failed to oversee the legality of interrogations, nor does it provide adequate safeguards for juvenile suspects. The concept of vulnerability that lies at the heart of the appropriate adult safeguard in England and Wales appears to be lost in translation. Rather than providing a safeguard for juveniles at their most vulnerable, the appropriate adult is more concerned with indulging the needs of the interrogators in China

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    • 

    corecore