71 research outputs found

    Classical Structures Based on Unitaries

    Full text link
    Starting from the observation that distinct notions of copying have arisen in different categorical fields (logic and computation, contrasted with quantum mechanics) this paper addresses the question of when, or whether, they may coincide. Provided all definitions are strict in the categorical sense, we show that this can never be the case. However, allowing for the defining axioms to be taken up to canonical isomorphism, a close connection between the classical structures of categorical quantum mechanics, and the categorical property of self-similarity familiar from logical and computational models becomes apparent. The required canonical isomorphisms are non-trivial, and mix both typed (multi-object) and untyped (single-object) tensors and structural isomorphisms; we give coherence results that justify this approach. We then give a class of examples where distinct self-similar structures at an object determine distinct matrix representations of arrows, in the same way as classical structures determine matrix representations in Hilbert space. We also give analogues of familiar notions from linear algebra in this setting such as changes of basis, and diagonalisation.Comment: 24 pages,7 diagram

    Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution

    Get PDF
    Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential techniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior. We propose a new “piecewise” ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior “less approximate”. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true piecewise ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach with four examples; in each case, the approach offers fast and accurate inference

    An unusual cause of gastrointestinal bleeding: duodenal lipoma.

    Get PDF
    ‘The final, published version of this article is available at http://www.karger.com/ 10.1159/000327219Common causes of chronic upper gastrointestinal bleeding include oesophageal varices, gastroduodenal ulcers and malignancy, and patients mostly present with iron deficiency type anaemia. We present the case of a 60-year-old lady who presented with iron deficiency anaemia and on investigation was found to have a large duodenal polyp requiring surgical excision. On histological examination, the polyp was revealed to be a lipoma. We review the recent literature and formulate a management plan for this rare entity

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore