16 research outputs found

    Experimental Study Of High-beta Tokamak Stability

    Get PDF
    The stability properties of high-beta tokamak equilibria with ΔÎČp1 and ÎČ in the range of 10% have been studied with use of a dual-beam CO2-laser interferometer system. Two equilibria with ÎČ of 9% and 13% were observed to be stable. Another equilibrium with ÎČ of 10% was observed to be unstable with the characteristics of a high-toroidal-modenumber ballooning mode. © 1983 The American Physical Society.511199299

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined

    Scaling of the Plasma Rotation Needed for Stabilizing the n = 1 Resistive Wall Mode (Ideal Kink) in the DIII D Tokamak

    No full text
    Experiments in the DIII-D tokamak show that the n = 1 ideal kink can be stabilized by a resistive wall if the plasma is rotating fast enough. A database of the onset of the n = 1 resistive wall mode as a function of the equilibrium toroidal magnetic field, the plasma density and the toroidal rotation has been assembled for plasmas with beta between the theoretically predicted no wall and ideal wall stability limits. The critical rotation frequency is found to scale as the inverse of the Alfv\ue9n time with ? ?A 0.02 (evaluated at the q = 2 surface at ? 0.6) or ? ?S 0.7, where ?S is the sound time. The dependence of ? ? A or ? ?S on ?N/?N,no wall from 1?2 is weak and suggests the plasmas are in the \u27intermediate dissipation\u27 regime

    Physics of Plasmas Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks

    No full text
    Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability

    Physics of Plasmas Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks

    No full text
    Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability
    corecore