368 research outputs found

    The Faint Sky Variability Survey I: Goals and data reduction process

    Get PDF
    The Faint Sky Variability Survey is aimed at finding photometric and/or astrometric variable objects in the brightness range between 16<V<24 on timescales between tens of minutes and years with photometric precisions ranging from 3 millimagnitudes for the brightest to 0.2 magnitudes for the faintest objects. An area of ~23 square degrees, located at mid and high Galactic latitudes, has been covered using the Wide Field Camera on the 2.5m Isaac Newton Telescope on La Palma. Here we describe the main goals of the Faint Sky Variability Survey and the data reduction process.Comment: Accepted by MNRAS, 8 pages, 6 figure + 3 as JPEG

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+eM = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure

    Asymmetric nuclear matter:the role of the isovector scalar channel

    Get PDF
    We try to single out some qualitative new effects of the coupling to the δ\delta-isovector-scalar meson introduced in a minimal way in a phenomenological hadronic field theory. Results for the equation of state (EOSEOS) and the phase diagram of asymmetric nuclear matter (ANMANM) are discussed. We stress the consistency of the δ\delta-coupling introduction in a relativistic approach. New contributions to the slope and curvature of the symmetry energy and the neutron-proton effective mass splitting appear particularly interesting. A more repulsive EOSEOS for neutron matter at high baryon densities is expected. Effects on new critical properties of warm ANMANM, mixing of mechanical and chemical instabilities and isospin distillation, are also presented. The δ\delta influence is mostly on the {\it isovectorlike} collective response. The results are largely analytical and this makes the physical meaning quite transparent. Implications for nuclear structure properties of drip-line nuclei and for reaction dynamics with Radioactive Beams are finally pointed out.Comment: 12 pages, 10 Postscript figure

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets

    Get PDF
    We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well-represented by Fe lines. Relative abundances of light elements (CNO) and alpha-elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The log g parameter is known to better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude) and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe1-Fe2 balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, alpha elements, and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where alpha-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.Comment: MNRAS, in press, 12 page

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Democracy and governance networks: compatible or not?

    Get PDF
    The relationship between representative democracy and governance networks is investigated at a theoretical level. Four conjectures about the relationship are defined. The incompatibility conjectures rests on the primacy of politics and sees governance networks as a threat. The complementarity conjecture presents governance networks as a means of enabling greater participation in the policy process and sensitivity in programme implementation. The transitional conjecture posits a wider evolution of governance forms towards network relationships. The instrumental conjecture views governance networks as a powerful means through which dominant interests can achieve their goals. Illustrative implications for theory and practice are identified, in relation to power in the policy process, the public interest, and the role of public managers. The heuristic potential of the conjectures is demonstrated through the identification of an outline research agenda
    corecore