1,332 research outputs found
Generalized Heisenberg algebras and k-generalized Fibonacci numbers
It is shown how some of the recent results of de Souza et al. [1] can be
generalized to describe Hamiltonians whose eigenvalues are given as
k-generalized Fibonacci numbers. Here k is an arbitrary integer and the cases
considered by de Souza et al. corespond to k=2.Comment: 8 page
Transport Coefficients of the Yukawa One Component Plasma
We present equilibrium molecular-dynamics computations of the thermal
conductivity and the two viscosities of the Yukawa one-component plasma. The
simulations were performed within periodic boundary conditions and Ewald sums
were implemented for the potentials, the forces, and for all the currents which
enter the Kubo formulas. For large values of the screening parameter, our
estimates of the shear viscosity and the thermal conductivity are in good
agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure
SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy
We report on our serendipitous pre-discovery detection and detailed follow-up
of the broad-lined Type Ic supernova (SN) 2010ay at z = 0.067 imaged by the
Pan-STARRS1 3pi survey just ~4 days after explosion. The SN had a peak
luminosity, M_R ~ -20.2 mag, significantly more luminous than known GRB-SNe and
one of the most luminous SNe Ib/c ever discovered. The absorption velocity of
SN 2010ay is v_Si ~ 19,000 km/s at ~40 days after explosion, 2-5 times higher
than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable
epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL
and GRB-SNe. Assuming that the optical emission is powered by radioactive
decay, the peak magnitude implies the synthesis of an unusually large mass of
56 Ni, M_Ni = 0.9 M_solar. Modeling of the light-curve points to a total ejecta
mass, M_ej ~ 4.7 M_sol, and total kinetic energy, E_K ~ 11x10^51 ergs. The
ratio of M_Ni to M_ej is ~2 times as large for SN 2010ay as typical GRB-SNe and
may suggest an additional energy reservoir. The metallicity (log(O/H)_PP04 + 12
= 8.19) of the explosion site within the host galaxy places SN 2010ay in the
low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that
typically measured for the host environments of normal (broad-lined) Ic
supernovae. We constrain any gamma-ray emission with E_gamma < 6x10^{48} erg
(25-150 keV) and our deep radio follow-up observations with the Expanded Very
Large Array rule out relativistic ejecta with energy, E > 10^48 erg. We
therefore rule out the association of a relativistic outflow like those which
accompanied SN 1998bw and traditional long-duration GRBs, but place
less-stringent constraints on a weak afterglow like that seen from XRF 060218.
These observations challenge the importance of progenitor metallicity for the
production of a GRB, and suggest that other parameters also play a key role.Comment: 19 pages, 10 figures, V3 has revisions following referee's report;
more information at
http://www.cfa.harvard.edu/~nsanders/papers/2010ay/summary.htm
Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states
In this paper we present a new approach how to extract polarization-dependent
exchange-correlation energy densities for two-dimensional systems from
reference densities and energies of quantum dots provided by exact
diagonalization. Compared with results from literature we find systematic
corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.
Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC
Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients
The cyclin-dependent kinase inhibitor p57(Kip2) is epigenetically regulated in carboplatin resistance and results in collateral sensitivity to the CDK inhibitor seliciclib in ovarian cancer
Carboplatin remains a first-line agent in the management of epithelial ovarian cancer (EOC). Unfortunately, platinum-resistant disease ultimately occurs in most patients. Using a novel EOC cell line with acquired resistance to carboplatin: PEO1CarbR, genome-wide micro-array profiling identified the cyclin-dependent kinase inhibitor p57(Kip2) as specifically downregulated in carboplatin resistance. Presently, we describe confirmation of these preliminary data with a variety of approaches
Graphene transistors are insensitive to pH changes in solution
We observe very small gate-voltage shifts in the transfer characteristic of
as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer
is changed. This observation is in strong contrast to Si-based ion-sensitive
FETs. The low gate-shift of a GFET can be further reduced if the graphene
surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide
layer is applied instead, the opposite happens. This suggests that clean
graphene does not sense the chemical potential of protons. A GFET can therefore
be used as a reference electrode in an aqueous electrolyte. Our finding sheds
light on the large variety of pH-induced gate shifts that have been published
for GFETs in the recent literature
Families of superintegrable Hamiltonians constructed from exceptional polynomials
We introduce a family of exactly-solvable two-dimensional Hamiltonians whose
wave functions are given in terms of Laguerre and exceptional Jacobi
polynomials. The Hamiltonians contain purely quantum terms which vanish in the
classical limit leaving only a previously known family of superintegrable
systems. Additional, higher-order integrals of motion are constructed from
ladder operators for the considered orthogonal polynomials proving the quantum
system to be superintegrable
A molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids
We investigate in detail the initial susceptibility, magnetization curves,
and microstructure of ferrofluids in various concentration and particle dipole
moment ranges by means of molecular dynamics simulations. We use the Ewald
summation for the long-range dipolar interactions, take explicitly into account
the translational and rotational degrees of freedom, coupled to a Langevin
thermostat. When the dipolar interaction energy is comparable with the thermal
energy, the simulation results on the magnetization properties agree with the
theoretical predictions very well. For stronger dipolar couplings, however, we
find systematic deviations from the theoretical curves. We analyze in detail
the observed microstructure of the fluids under different conditions. The
formation of clusters is found to enhance the magnetization at weak fields and
thus leads to a larger initial susceptibility. The influence of the particle
aggregation is isolated by studying ferro-solids, which consist of magnetic
dipoles frozen in at random locations but which are free to rotate. Due to the
artificial suppression of clusters in ferro-solids the observed susceptibility
is considerably lowered when compared to ferrofluids.Comment: 33 pages including 12 figures, requires RevTex
"Dark" GRB 080325 in a Dusty Massive Galaxy at z ~ 2
We present optical and near infrared observations of GRB 080325 classified as
a "Dark GRB". Near-infrared observations with Subaru/MOIRCS provided a clear
detection of afterglow in Ks band, although no optical counterpart was
reported. The flux ratio of rest-wavelength optical to X-ray bands of the
afterglow indicates that the dust extinction along the line of sight to the
afterglow is Av = 2.7 - 10 mag. This large extinction is probably the major
reason for optical faintness of GRB 080325. The J - Ks color of the host
galaxy, (J - Ks = 1.3 in AB magnitude), is significantly redder than those for
typical GRB hosts previously identified. In addition to J and Ks bands, optical
images in B, Rc, i', and z' bands with Subaru/Suprime-Cam were obtained at
about one year after the burst, and a photometric redshift of the host is
estimated to be z_{photo} = 1.9. The host luminosity is comparable to L^{*} at
z \sim 2 in contrast to the sub-L^{*} property of typical GRB hosts at lower
redshifts. The best-fit stellar population synthesis model for the host shows
that a large dust extinction (Av = 0.8 mag) attributes to the red nature of the
host and that the host galaxy is massive (M_{*} = 7.0 \times 10^{10} Msun)
which is one of the most massive GRB hosts previously identified. By assuming
that the mass-metallicity relation for star-forming galaxies at z \sim 2 is
applicable for the GRB host, this large stellar mass suggests the high
metallicity environment around GRB 080325, consistent with inferred large
extinction.Comment: 22 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- …