396 research outputs found
Consequences of large impacts on Enceladus' core shape
International audienceThe intense activity on Enceladus suggests a differentiated interior consisting of a rocky core, an internal ocean and an icy mantle. However, topography and gravity data suggests large heterogeneity in the interior, possibly including significant core topography. In the present study, we investigated the consequences of collisions with large impactors on the core shape. We performed impact simulations using the code iSALE2D considering large differentiated impactors with radius ranging between 25 and 100 km and impact velocities ranging between 0.24 and 2.4 km/s. Our simulations showed that the main controlling parameters for the post-impact shape of Enceladus’ rock core are the impactor radius and velocity and to a lesser extent the presence of an internal water ocean and the porosity and strength of the rock core. For low energy impacts, the impactors do not pass completely through the icy mantle. Subsequent sinking and spreading of the impactor rock core lead to a positive core topographic anomaly. For moderately energetic impacts, the impactors completely penetrate through the icy mantle, inducing a negative core topography surrounded by a positive anomaly of smaller amplitude. The depth and lateral extent of the excavated area is mostly determined by the impactor radius and velocity. For highly energetic impacts, the rocky core is strongly deformed, and the full body is likely to be disrupted. Explaining the long-wavelength irregular shape of Enceladus’ core by impacts would imply multiple low velocity (<2.4 km/s) collisions with deca-kilometric differentiated impactors, which is possible only after the LHB period
Plans and Speculated Actions
In the last decades, much design research around “future-focused thinking” has come to prominence in relation to changes in human behaviour, at different scales, from the Quantified Self, to visions of smart cities, to Transition Design. The design of products, services, environments and systems plays an important role in affecting what people do, now and in the future: what has become known in recent years as design for behaviour change. Our Conversation is motivated by three, interlinked questions: on designers’ agency; on sense-making; and on complexity. We will collectively explore considerations of people, and people’s behaviour, in design, particularly in the ways visions of futures are drafted
Recommended from our members
Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report
ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely
Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry
Tidal interactions between Saturn and its satellites play a crucial role in
both the orbital migration of the satellites and the heating of their
interiors. Therefore constraining the tidal dissipation of Saturn (here the
ratio k2/Q) opens the door to the past evolution of the whole system. If
Saturn's tidal ratio can be determined at different frequencies, it may also be
possible to constrain the giant planet's interior structure, which is still
uncertain. Here, we try to determine Saturn's tidal ratio through its current
effect on the orbits of the main moons, using astrometric data spanning more
than a century. We find an intense tidal dissipation (k2/Q= (2.3 \pm 0.7)
\times 10-4), which is about ten times higher than the usual value estimated
from theoretical arguments. As a consequence, eccentricity equilibrium for
Enceladus can now account for the huge heat emitted from Enceladus' south pole.
Moreover, the measured k2/Q is found to be poorly sensitive to the tidal
frequency, on the short frequency interval considered. This suggests that
Saturn's dissipation may not be controlled by turbulent friction in the fluid
envelope as commonly believed. If correct, the large tidal expansion of the
moon orbits due to this strong Saturnian dissipation would be inconsistent with
the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian
subnebulae. But it would be compatible with a new model of satellite formation
in which the Saturnian satellites formed possibly over longer time scale at the
outer edge of the main rings. In an attempt to take into account for possible
significant torques exerted by the rings on Mimas, we fitted a constant rate
da/dt on Mimas semi-major axis, also. We obtained an unexpected large
acceleration related to a negative value of da/dt= -(15.7 \pm 4.4) \times 10-15
au/day
Implementing goals of care conversations with veterans in VA long-term care setting: a mixed methods protocol
Abstract
Background
The program “Implementing Goals of Care Conversations with Veterans in VA LTC Settings” is proposed in partnership with the US Veterans Health Administration (VA) National Center for Ethics in Health Care and the Geriatrics and Extended Care Program Offices, together with the VA Office of Nursing Services. The three projects in this program are designed to support a new system-wide mandate requiring providers to conduct and systematically record conversations with veterans about their preferences for care, particularly life-sustaining treatments. These treatments include cardiac resuscitation, mechanical ventilation, and other forms of life support. However, veteran preferences for care go beyond whether or not they receive life-sustaining treatments to include issues such as whether or not they want to be hospitalized if they are acutely ill, and what kinds of comfort care they would like to receive.
Methods
Three projects, all focused on improving the provision of veteran-centered care, are proposed. The projects will be conducted in Community Living Centers (VA-owned nursing homes) and VA Home-Based Primary Care programs in five regional networks in the Veterans Health Administration. In all the projects, we will use data from context and barrier and facilitator assessments to design feedback reports for staff to help them understand how well they are meeting the requirement to have conversations with veterans about their preferences and to document them appropriately. We will also use learning collaboratives—meetings in which staff teams come together and problem-solve issues they encounter in how to get veterans’ preferences expressed and documented, and acted on—to support action planning to improve performance.
Discussion
We will use data over time to track implementation success, measured as the proportions of veterans in Community Living Centers (CLCs) and Home-Based Primary Care (HBPC) who have a documented goals of care conversation soon after admission. We will work with our operational partners to spread approaches that work throughout the Veterans Health Administration.http://deepblue.lib.umich.edu/bitstream/2027.42/134645/1/13012_2016_Article_497.pd
Trypanosoma (Herpetosoma) rangeli Tejera, 1920: intracellular amastigote stages of reproduction in white mice
The method, site, and stage of multiplication of Trypanosoma (Herpetosoma) rangeli Tejera, 1920 has not hitherto been known. "We have now observed many intracellular nests or pseudocysts, containing amastigotes and trypomastigotes of this parasite in the heart, liver, and spleen of suckling (5.0 g) male white mice (NMRI strain) inoculated i.p. with 9 x 10(4) metatrypomastigotes/g body weight from a 12-day-old culture of the "Dog-82" strain of T. rangeli. At the peak of parasitemia (1.9 x 10(6) trypomastigotes/ml blood, 3 days post-inoculation) various tissues were taken for sectioning and staining. The heart was most intensely parasitized. The amastigotes were rounded or ellipsoidal, with a rounded nucleus and the kinetoplast in the form of a straight or curved bar; the average maximum diameter of 50 measured amastigotes was 4.2 p. Binary fission was seen in the nucleus and kinetoplast of some amastigotes; no blood trypomastigotes were seen in division. The above characteristics, as well as the location of the pseudocysts in the tissues, are similar to T. cruzi. Comparison of these results with those reported for other Herpetosoma suggest study of the taxonomic position of T. rangeli
Canvass: a crowd-sourced, natural-product screening library for exploring biological space
NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
- …