479 research outputs found

    The development of a top-surface mounted technique for the measurement of moisture profiles in drying concrete slabs

    Get PDF
    Failure of surface coatings on concrete slabs can occur if there is excess moisture in the slab. There is a need for reliable standard measurement procedures to determine whether a concrete slab is dry enough to have a surface coating applied. Accordingly the Building Research Association of New Zealand commissioned this project to develop a top-surface mounted resistive technique for measuring moisture profiles in concrete flooring slabs. Geophysical vertical electric sounding (VES) techniques have been adapted to determine resistivity profiles in concrete slabs through mathematical inversion of apparent resistivity readings made at the surface. Relative-humidity profiles may then be extracted when the relationship between relative-humidity and resistivity has been determined. The project has involved the development and testing of: • 'wet' electrodes (ie. wooden electrodes wetted with a conducting solution) which are able to reduce and stabilise the otherwise high, variable and non-reproducible electrode-concrete interface resistance, • a VES instrument comprising an array of electrodes multiplexed to a computer controlled resistivity meter and operated through a graphical user interface and software able to 'invert' the apparent resistivity curves determined, • embedded electrode systems for independent measurement of resistivity profiles for use in evaluating the VES instrument and technique and determining the relationship between relative humidity and resistivity. Resistivity ρ and relative-humidity ψ profiles have been measured using a range of concrete samples and the relationship between them, away from the dry surface region, has been found to be described by the equation ψ = -aln(ρ) + b where a and b are coefficients that are functions of depth and the age of the concrete. The ability of the VES instrument to determine resistivity profiles from non-reinforced slabs is demonstrated in this report. However reinforcing at shallow depths (30 mm below the surface) does not allow profile recovery and makes commercialisation of the instrument unlikely. It is suggested that the embedded electrode systems developed here, provide a convenient and inexpensive method of directly measuring resistivity profiles from which relative-humidity profiles may be extracted with a high degree of precision

    CLaSPS: a new methodology for Knowledge extraction from complex astronomical dataset

    Get PDF
    In this paper we present the Clustering-Labels-Score Patterns Spotter (CLaSPS), a new methodology for the determination of correlations among astronomical observables in complex datasets, based on the application of distinct unsupervised clustering techniques. The novelty in CLaSPS is the criterion used for the selection of the optimal clusterings, based on a quantitative measure of the degree of correlation between the cluster memberships and the distribution of a set of observables, the labels, not employed for the clustering. In this paper we discuss the applications of CLaSPS to two simple astronomical datasets, both composed of extragalactic sources with photometric observations at different wavelengths from large area surveys. The first dataset, CSC+, is composed of optical quasars spectroscopically selected in the SDSS data, observed in the X-rays by Chandra and with multi-wavelength observations in the near-infrared, optical and ultraviolet spectral intervals. One of the results of the application of CLaSPS to the CSC+ is the re-identification of a well-known correlation between the alphaOX parameter and the near ultraviolet color, in a subset of CSC+ sources with relatively small values of the near-ultraviolet colors. The other dataset consists of a sample of blazars for which photometric observations in the optical, mid and near infrared are available, complemented for a subset of the sources, by Fermi gamma-ray data. The main results of the application of CLaSPS to such datasets have been the discovery of a strong correlation between the multi-wavelength color distribution of blazars and their optical spectral classification in BL Lacs and Flat Spectrum Radio Quasars and a peculiar pattern followed by blazars in the WISE mid-infrared colors space. This pattern and its physical interpretation have been discussed in details in other papers by one of the authors.Comment: 18 pages, 9 figures, accepted for publication in Ap

    The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure

    Get PDF
    CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness

    A Matrix Factorization Approach for Integrating Multiple Data Views

    Full text link

    Consensus clustering in complex networks

    Get PDF
    The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting partitions. This framework is also particularly suitable to monitor the evolution of community structure in temporal networks. An application of consensus clustering to a large citation network of physics papers demonstrates its capability to keep track of the birth, death and diversification of topics.Comment: 11 pages, 12 figures. Published in Scientific Report

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar

    Get PDF
    Peak amplitude measurements of the fundamental mode of oscillation of a suspended aluminum alloy bar hit by an electron beam show that the amplitude is enhanced by a factor ~3.5 when the material is in the superconducting state. This result is consistent with the cosmic ray observations made by the resonant gravitational wave detector NAUTILUS, made of the same alloy, when operated in the superconducting state. A comparison of the experimental data with the predictions of the model describing the underlying physical process is also presented

    Vibrational excitation induced by electron beam and cosmic rays in normal and superconductive aluminum bars

    Full text link
    We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement explains the anomalous large signals due to cosmic rays previously detected in the NAUTILUS gravitational wave detector.Comment: 28 pages, 13 figure
    corecore