43 research outputs found

    The Financial Burden of Non-Communicable Chronic Diseases in Rural Nigeria: Wealth and Gender Heterogeneity in Health Care Utilization and Health Expenditures

    Get PDF
    Objectives Better insights into health care utilization and out-of-pocket expenditures for non-communicable chronic diseases (NCCD) are needed to develop accessible health care and limit the increasing financial burden of NCCDs in Sub-Saharan Africa. Methods A household survey was conducted in rural Kwara State, Nigeria, among 5,761 individuals. Data were obtained using biomedical and socio-economic questionnaires. Health care utilization, NCCD-related health expenditures and distances to health care providers were compared by sex and by wealth quintile, and a Heckman regression model was used to estimate health expenditures taking selection bias in health care utilization into account. Results The prevalence of NCCDs in our sample was 6.2%. NCCD-affected individuals from the wealthiest quintile utilized formal health care nearly twice as often as those from the lowest quintile (87.8% vs 46.2%, p = 0.002). Women reported foregone formal care more often than men (43.5% vs. 27.0%, p = 0.058). Health expenditures relative to annual consumption of the poorest quintile exceeded those of the highest quintile 2.2-fold, and the poorest quintile exhibited a higher rate of catastrophic health spending (10.8% among NCCD-affected households) than the three upper quintiles (4.2% to 6.7%). Long travel distances to the nearest provider, highest for the poorest quintile, were a significant deterrent to seeking care. Using distance to the nearest facility as instrument to account for selection into health care utilization, we estimated out-of-pocket health care expenditures for NCCDs to be significantly higher in the lowest wealth quintile compared to the three upper quintiles. Conclusions Facing potentially high health care costs and poor accessibility of health care facilities, many individuals suffering from NCCDsā€”particularly women and the poorā€”forego formal care, thereby increasing the risk of more severe illness in the future. When seeking care, the poor spend less on treatment than the rich, suggestive of lower quality care, while their expenditures represent a higher share of their annual household consumption. This calls for targeted interventions that enhance health care accessibility and provide financial protection from the consequences of NCCDs, especially for vulnerable populations

    A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation

    Get PDF
    Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12ā€“15 Hz), slow oscillations (<1 Hz) and K-complexes, as well as their distinct temporal relations, and response to auditory stimuli. We show that with the inclusion of detailed calcium currents, the thalamic neural mass model is able to generate different firing modes, and validate the model with EEG-data from a recent sleep study in humans, where closed-loop auditory stimulation was applied. The model output relates directly to the EEG, which makes it a useful basis to develop new stimulation protocols

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    The ā€œconscious pilotā€ā€”dendritic synchrony moves through the brain to mediate consciousness

    Get PDF
    Cognitive brain functions including sensory processing and control of behavior are understood as ā€œneurocomputationā€ in axonalā€“dendritic synaptic networks of ā€œintegrate-and-fireā€ neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendriticā€“dendritic gap junctions, forming transient syncytia (ā€œdendritic websā€) in input/integration layers oriented sideways to axonalā€“dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The ā€œconscious pilotā€ is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Algae, phytoplankton and eutrophication research and management in South Africa: past, present and future

    No full text

    A complete psychophysiological profile of a Paralympic athlete in a ultraendurance: A case study

    No full text
    Psychophysiological response of athletes with spinal cord injurie has not been reported yet in scientific literature. The aim of this study is to analyze the specific psychophysiological response in a Paralympic athlete during competitive activities. We collected the following psychophysiological measurements: anxiety-trait, anxiety-state, locus of control, perceived psychological stress, stress-copying style, rate of perceived exertion, perceived muscle pain, body temperature, forced vital capacity, blood oxygen saturation, blood glucose and lactate concentrations, isometric hand strength, cortical arousal, heart rate variability, heart rate and velocities of a female Paralympic spinal cord injured athlete in a 11 hours and 44 minutes mountain ultraendurance event. An increase in sympathetic autonomous nervous system, heart rate, lactate, muscular pain and rated of perceived exertion and a decrease in cortical arousal and hand strength and inspiratory muscle fatigue. These results are consistent with the expected response during a highly stressful situation and consistent with previous findings in athletes without spinal cord injurie.Sin financiaciĆ³nNo data WoSScopus (Conference Paper)No data SPI ā€“ ICEE (2018)UE
    corecore