114 research outputs found
What is the effect of a low literacy talking book on patient knowledge, anxiety and communication before radiation therapy starts? A pilot study
Introduction: Radiation therapy is a common cancer treatment, requiring timely information to help patients prepare for treatment. We pilot tested a low literacy, psycho-educational talking book (written booklet, with accompanying audio recording) to examine (i) the effect of the tool on knowledge, anxiety and communication; (ii) acceptability, and (iii) how it was used in appointments. Methods: A pre-post design was employed. Patients scheduled to receive radiation therapy for any cancer were recruited from two hospitals in Sydney, Australia. Participants were sent the talking book before treatment planning and completed baseline and follow-up surveys, before and after the intervention. Results: Forty participants were recruited, and 39 completed all study assessments. Overall, knowledge increased after receiving the talking book by 3.8 points from 13.9 to 17.7/20 (95% confidence interval (CI) 2.7, 4.8, P < 0.001). Anxiety and concerns were significantly lower after receiving the talking book (P = 0.015 and P = 0.004, respectively). Nearly half of participants (s = 17, 48%) reported using the book during appointments. Most reported finding it easier to communicate (n = 31, 89%) and to ask more questions (n = 21, 62%). Conclusion: The talking book shows promise in improving knowledge, reducing anxiety and enhancing communication. Strategies to support the implementation of the talking book are required. Further studies to translate the book into different languages are also planned
Transcriptome analyses of the Giardia lamblia life cycle
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Molecular and Biochemical Parasitology 174 (2010): 62-65, doi:10.1016/j.molbiopara.2010.05.010.We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using
Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed
constitutively. 71 transcripts were upregulated specifically during excystation and 42 during
encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major
differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in
cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All
clusters included known genes and pathways as well as proteins unique to Giardia or
diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases,
phosphatases, and DNA replication proteins involved in excystation and encystation, which
could be important for examining the roles of cell signaling in giardial differentiation. Overall,
these data pave the way for directed gene discovery and a better understanding of the biology
of Giardia lamblia.BJD, DSR, and FDG were supported by NIH grants AI42488, GM61896, DK35108, and
AI051687. DP and SGS were supported by grants from the Swedish Natural Science Research
Council, the Swedish Medical Research Council, and the Karolinska Institutet. AGM, SRB,
SPP, and MJC were supported by NIH grant AI51089 and by the Marine Biological Laboratory’s
Program in Global Infectious Diseases, funded by the Ellison Medical Foundation
Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal
In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission)
Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation
Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Molecular and Biochemical Parasitology 152 (2007): 80-89, doi:10.1016/j.molbiopara.2006.12.001.The ability of Giardia lamblia to undergo two distinct differentiations in
response to physiologic stimuli is central to its pathogenesis. The giardial
cytoskeleton changes drastically during encystation and excystation. However, the
signal transduction pathways mediating these transformations are poorly
understood. We tested the hypothesis that PP2A, a highly conserved
serine/threonine protein phosphatase, might be important in giardial differentiation.
We found that in vegetatively growing trophozoites, gPP2A-C protein localizes to
basal bodies/centrosomes, and to cytoskeletal structures unique to Giardia: the
ventral disk, and the dense rods of the anterior, posterior-lateral, and caudal
flagella. During encystation, gPP2A-C protein disappears from only the anterior
flagellar dense rods. During excystation, gPP2A-C localizes to the cyst wall in
excysting cysts but is not found in the wall of cysts with emerging excyzoites.
Transcriptome and immunoblot analyses indicated that gPP2A-C mRNA and
protein are upregulated in mature cysts and during the early stage of excystation
that models passage through the host stomach. Stable expression of gPP2A-C
antisense RNA did not affect vegetative growth, but strongly inhibited the
formation of encystation secretory vesicles (ESV) and water-resistant cysts.
Moreover, the few cysts that formed were highly defective in excystation.
Thus, gPP2A-C localizes to universal cytoskeletal structures and to
structures unique to Giardia. It is also important for encystation and excystation,
crucial giardial transformations that entail entry into and exit from dormancy.This work was funded
by NIH grants GM61896, AI51687, AI42488, and DK35108. Dr. A.G. McArthur was
supported by NIH grant AI51089 and the Marine Biological Laboratory’s Program
in Global Infectious Diseases, funded by the Ellison Medical Foundation
Detection of Echinococcus multilocularis in Carnivores in Razavi Khorasan Province, Iran Using Mitochondrial DNA
Echinococcus multilocularis causes alveolar echinococcosis, a serious zoonotic disease present in many areas of the world. The parasite is maintained in nature through a life cycle in which adult worms in the intestine of carnivores transmit infection to small mammals, predominantly rodents, via eggs in the feces. Humans may accidentally ingest eggs of E. multilocularis through contact with the definitive host or by direct ingestion of contaminated water or foods, causing development of a multivesicular cyst in the viscera, especially liver and lung. We found adult E. multilocularis in the intestine and/or eggs in feces of all wild carnivores examined and in some stray and domestic dogs in villages of Chenaran region, northeastern Iran. The life cycle of E. multilocularis is being maintained in this area by wild carnivores, and the local population and visitors are at risk of infection with alveolar echinococcosis. Intensive health initiatives for control of the parasite and diagnosis of this potentially fatal disease in humans, in this area of Iran, are needed
Identification and Characterization of a Mef2 Transcriptional Activator in Schistosome Parasites
Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences
An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy
Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food
sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies.
M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have
diversified into many distinct compatibility types that are distinguished by the failure of swarming
colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population
belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace
patterns of incipient genomic divergence, specifically related to social divergence. Although
homologous recombination occurs frequently within the two MLST clades, we find an almost
complete absence of recombination events between them. As the two clades are very closely related
and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between
them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid
substitution in the core genome. We identify a large genomic tract that consistently differs between
isolates that do not freely merge and therefore is a candidate region for harbouring gene(s)
responsible for self/non-self discrimination
An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in giardia lamblia
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes
Investigation of process parameter effect on anisotropic properties of 3D printed sand molds
The development of sand mold three-dimensional printing technologies enables the manufacturing of molds without the use of a physical model. However, the effects of the three-dimensional printing process parameters on the mold permeability and strength are not well known, leading the industries to keep old settings until castings have recurring defects. In the present work, the influence of these parameters was experimentally investigated to understand their effect on the mold strength and permeability. Cylindrical and barshaped test specimens were printed to perform, respectively, permeability and bending strength measurements. Experiments were designed to statistically quantify the individual and combined effect of these process parameters. While the binder quantity only affects the mold strength, increasing the recoater speed leads to both greater permeability and reduced strength due to the reduced sand compaction. Recommendations for optimizing some 3D printer settings are proposed to attain predefined mold properties and minimize the anisotropic behavior of the sand mold in regard to both the orientation and the position in the job box
- …